
© Sellami A, Haoues M, Ben-Abdallah H, Abran A, Lesterhuis A, Symons C, Trudel S. Case 
Study: Sizing Natural Language/ User Stories/ UML Use Cases for Web and Mobile 
Applications using COSMIC FSM  

 

 

The COSMIC Functional Size Measurement Method 

Version 4.0.2 

 

Case Study 

Sizing Natural Language/ User Stories/ UML Use Cases for Web and Mobile 

Applications using COSMIC FSM 

 

 

 

Version 1.2 

May 2019 



2 
Case Study: Sizing Natural Language/ User Stories/ UML Use Cases for Web and Mobile 
Applications using COSMIC FSM, v1.2 Copyright © 2019 

Acknowledgment 

Authors and reviewers of Version 1.1  

Asma Sellami * 

Institut Supérieur d’Informatique 
et de Multimédia de Sfax 

University of Sfax Tunisia 

Alain Abran* 

École de Technologie 
Supérieure, Université du 
Québec Canada 

 

Arlan Lesterhuis* 

MPC 

Netherlands 

Mariem Haoues* 

Institut Supérieur d’Informatique 
et de Multimédia de Sfax 

University of Sfax Tunisia 

Hanêne Ben-Abdallah* 

Higher Colleges of Technology 

Dubai, UAE 

Francisco Valdes Souto 

National Autonomous University 
of Mexico, Science Faculty, 
CDMX Mexico City, Mexico 

Bruce Reynolds 

Tecolote Research United States 

  

Authors and reviewers of Version 1.0.3 

Asma Sellami* 

Institut Supérieur d’Informatique 
et de Multimédia de Sfax 

University of Sfax Tunisia 

Alain Abran* 

École de Technologie 
Supérieure, Université du 
Québec Canada 

Arlan Lesterhuis* 

MPC 

Netherlands 

Mariem Haoues* 

Institut Supérieur d’Informatique 
et de Multimédia de Sfax 

University of Sfax Tunisia 

Colin Hammond 

United Kingdom 

Hanêne Ben-Abdallah* 

Higher Colleges of Technology 

Dubai, UAE 

Francisco Valdes Souto 

National Autonomous University 
of Mexico, Science Faculty, 
CDMX Mexico City, Mexico  

Bruce Reynolds 

Tecolote Research 

United States 

 

Authors and reviewers of Version 1.0.2  

Asma Sellami* 

Institut Supérieur d’Informatique 
et de Multimédia de Sfax 

University of Sfax Tunisia 

Alain Abran* 

École de Technologie 
Supérieure, Université du 
Québec 

Canada 

Sylvie Trudel * 

Université du Québec à Montréal 

Université du Québec  

Canada 

Mariem Haoues* 

Institut Supérieur d’Informatique 
et de Multimédia de Sfax 

University of Sfax Tunisia 

Arlan Lesterhuis* 

The Netherlands 

Luigi Lavazza  

Universita degli Studi 
dell’Insubria  

Italy  

 

Hanêne Ben-Abdallah* 

King Abdulaziz University Jeddah 

Kingdom of Saudi Arabia 

Charles Symons* 

United Kingdom 

 

 
* Authors of this case study 

 



3 
RestoSys Case Study, v1.2 Copyright © 2019 

Version Control 

The following is a partial account of the evolution of this case study. 

Date  Reviewer (s) Modifications / Additions 

2016-05-20 Sellami, Haoues, 
Ben-Abdallah, 
Abran 

This case study was entitled “Sizing the functional requirements in COSMIC FP units as 
documented in natural language/ UML use cases: A case study for Web and Mobile Apps” 

It was tested with graduate students at ETS 

2016-06-01 Sellami, Haoues, 
Ben-Abdallah, 
Abran, Symons, 
Lesterhuis 

Updates to:  

- propose a new title “Case study: Sizing natural language/ UML Requirements for Web 
and Mobile Applications using COSMIC FSM” 

- update the purpose of measurement 

- clarify the used terminolgy and avoid confusion  

- correct the measurement of the error/confirmation messages 

2016-06-25 Sellami, Haoues, 
Ben-Abdallah, 
Abran, Lesterhuis 

Updates to:  

- identify Functional Processes  

- correct the use case diagrams and its related textual descriptions 

- identify object of interests and data groups 

2016-07-03 Sellami, Haoues, 
Ben-Abdallah, 
Abran, Lesterhuis, 
Trudel 

Updates to: 

- identify object of interests and data groups 

- adjust layout of the document 

- replace “data validate” action type in UC textual description by “data persist” 

2016-09-05 Sellami, Haoues, 
Ben-Abdallah, 
Abran, Lesterhuis, 
Trudel, Lavazza 

Significant revision.  

Updates to: 

- propose a new title “Case Study Sizing Natural Language/UML Use Cases for Web and 
Mobile Applications using COSMIC FSM” 

- adjust UC diagrams  

- explain the UC textual descriptions 

- clarify data groups and data attributes, and the description of some functional processes 

- delete some redundant tables 

- delete some functional processes 

2017-11-10 Sellami, Haoues, 
Ben-Abdallah, 
Abran 

Significant revision.  

Updates to: 

- Clarify the UC description and their associated FP in both mobile and web apps. 

- Follow the COSMIC method v4.0.2 (COSMIC, 2017)  

- Take into account some points raised by (Haoues et al., 2017b) 

- Clarify which use cases are represented each with one functional process and which use 
cases are represented with two functional processes 

2018-01-18 Sellami, Haoues, 
Ben-Abdallah, 
Abran, Colin 
Hammond 

Minor revision. 

Updates to: 

- Breackdown REQ 9 into REQ 9 and REQ 10 in order to visualize separately each UC 
(Delete an order) and (View the list of orders), and that correspond respectively to 
(FP33) and (FP32) 

- Clarify the use cases description and their associated functional processes in web app s 
to avoid redundant actions. In particular, UC involving Modify or Delete object. 

- Adjust the total Functional Size of RestoSys according to the main changes. 

2019-03-16 Sellami, Haoues, 
Ben-Abdallah, 
Abran, Lesterhuis, 
Valdes Souto, 
Reynolds 

Significant revision. 

Updates to: 

- Breackdown FP2 into FP2 –FP6 and FP3 into FP 7 –FP9 to correct the FP identification 

- Delete REQ 10, consider cheap meals as one of the item families and delete all its FP 

- Clarify the data exchanges between mobile and web app components for REQ1 and 
REQ3 

- Update the data persistent storages 

- Rectify the objects of interests, data groups, and data attributes 

- Adjust the total functional size of RestoSys according to the main changes 

2019-05-27 Sellami, Haoues, 
Ben-Abdallah, 
Abran, Lesterhuis 

Minor revision. 

Updates to: 

- Quantification of REQ using User Stories Formats 

- Identification of functional processes  

 

“This case study is published by COSMIC by kind permission of the authors. Readers are invited to send any comments directly to the authors.” 



4 
RestoSys Case Study, v1.2 Copyright © 2019 

 

Table of Contents  

Table of Contents .................................................................................................................. 4 

1 RESTAURANT MANAGEMENT SYSTEM REQUIREMENTS ........................................ 5 

1. 1 Context ....................................................................................................................... 5 

1. 2 Hardware Components ............................................................................................... 5 

1. 3 Software-Hardware Interactions .................................................................................. 6 

1. 4 Software Requirements ............................................................................................... 6 

A. Requirements .......................................................................................................... 6 

B. User Stories Description .......................................................................................... 7 

C. Use Cases Description ........................................................................................ 9 

D. NFR - Non-Functional Requirements ..................................................................18 

E. PRC - Project Requirements and Constraints .........................................................18 

2 THE MEASUREMENT STRATEGY PHASE .................................................................19 

2. 1 Measurement Purpose ...............................................................................................19 

2. 2 Measurement Scope ..................................................................................................19 

2. 3 Identification of Functional Users ...............................................................................19 

2. 4 Other Measurement Strategy Parameters ..................................................................20 

A. Level of Granularity ................................................................................................20 

B. Decomposition .......................................................................................................20 

3 THE MAPPING PHASE .................................................................................................21 

3. 1 Identification of the Functional Processes and the Software Triggering Events ..........21 

3. 2 Identification of Objects of Interest, Data Groups, and Data Attributes .......................22 

4 THE MEASUREMENT PHASE .....................................................................................24 

4. 1 Functional Size Measured from REQ - Natural Language ..........................................24 

A. For Mobile App .......................................................................................................24 

B. For Web app ..........................................................................................................26 

C. For the Whole System ........................................................................................35 

4. 2 Functional Size Measured from REQ – US and UML UC Textual Description ............35 

A. Using User Stories Description ...............................................................................35 

B. Using Action-Type ..................................................................................................37 

REFERENCE .......................................................................................................................44 

APPENDIX A - Structured Use Case Documentation Format Using Action-Type .................45 

  



5 
RestoSys Case Study, v1.2 Copyright © 2019 

1 

1 RESTAURANT MANAGEMENT SYSTEM REQUIREMENTS 

1. 1 Context 

This Case Study presents the measurement results of applying the COSMIC FSM method 

(Version 4.0.2) to the “Restaurant Management System”. This system is composed of 

hardware and software components. The software component named RestoSys includes two 

parts: a mobile app and a web app. 

The “Restaurant Management System” requirements are documented in a technical report of 

the final project of study for the Professional Master's Degree at the University of Sfax-Tunisia 

(Mhadhbi 2013). 

This case study is structured as follows:  

• Chapter 1 presents the background for the “Restaurant Management System” case 

study. It provides different representations of Hardware/Software requirements. The 

focus of this chapter is especially on the description of the Functional Requirements as 

documented in natural language, user stories, UML use case diagrams, and the textual 

descriptions of use cases using action-type (see Appendix A). 

• Chapter 2 presents the measurement strategy phase, including: measurement purpose 

and scope, functional users, level of granularity and decomposition.  

• Chapter 3 presents the mapping phase including: triggering events, functional 

processes, data groups, data attributes, and objects of interest.  

• Chapter 4 presents the measurement phase. The measurement results are provided 

in two ways:  

(i) a direct application of COSMIC FSM method on functional requirements described 

in natural language in section 4.1; and 

(ii) an application of COSMIC FSM method on the action-type of use case actions in 

section 4.2. 

1. 2 Hardware Components 

As shown in Figure 1, the hardware configuration of “Restaurant Management System” is 

composed of: 

• A database server allowing a high storage capacity. 

• A Web server that hosts the web app part of RestoSys. 

• The admin interacts with RestoSys via a PC with Web browser, while the waiter 

interacts with the same system via a Smartphone. 

 

 

Figure 1 Hardware Configuration 



6 
RestoSys Case Study, v1.2 Copyright © 2019 

1. 3 Software-Hardware Interactions 

The RestoSys is composed of two parts: a mobile app and a web app, collaborating according 

to the client-server model: 

• The RestoSys ensures communication between the mobile app (the waiter) and the 

web app (the admin). 

• The admin physically maintains the database (that is included in the DB server) directly 

via a Web browser. 

The RestoSys application includes the following functionality: 

• The waiter logs in with help of the mobile app. 

• The Web app retrieves data from the DB and provides the required data to the mobile 

app. 

• The waiter maintains a customer's order (by adding or modifying an order). 

• The admin logs in with help of the Web browser. 

• The Web app retrieves/provides data from/to the DB. 

• The admin maintains the required data via the web app, see the requirements in section 

1.4 A. 

1. 4 Software Requirements 

According to (COSMIC 2017), software requirements are classified into three categories: 

Functional User Requirements (FUR), Non-Functional Requirements (NFR), and Project 

Requirements and Constraints (PRC). FUR express “what the software shall do in terms of 

tasks and services”. NFR include “any requirement for a hardware/software system or for a 

software product, including how it should be developed and maintained and how it should 

perform in operation, except any functional user requirement for the software”. PRC describe 

“how a software system project should be managed and resourced or constraints that affect 

its performance”. In this case study we will mainly use “Requirements” for convenience.  

A. Requirements 

In this section, the Requirements (REQ) for the RestoSys are identified. First, the REQ are 

described in natural language. Then, those same REQ are modeled in different formats 

including user stories and UML Use Case diagrams. Each use case in a UML Use Case 

diagram is next detailed in textual descriptions of use cases using action-type as presented in 

Appendix A. 

a. REQ expressed in natural language 

The RestoSys includes the following tasks: 

• Order management: This task allows the waiter to add, and-or modify an order via a 
Smartphone. It also allows the admin to delete an order. During working hours, the 
waiters (mobile app) and the admin (web app) are continuously connected. 

• Account management: This task involves employees’ management, and it enables 
access to the application with a username and a password. 

• Restaurant Menu management: This task allows the management of item1families and 
the classification of items into item families. 

Note that the users of RestoSys (waiter and-or admin) must be logged in before executing one 
of the previous tasks (Order management, Account management, and Restaurant Menu 
management). 

The RestoSys must establish the following functionality: 

 
1Item is used to describe a dish and beverage 



7 
RestoSys Case Study, v1.2 Copyright © 2019 

• REQ1 - Login “Mobile App”: The employees (waiters) must be logged in to RestoSys 
using their Smartphones. Each waiter has a username and a password.  

• REQ2 - Maintain Order: The waiter can add and-or modify an order. The waiter takes 
an order by selecting the customer’s table and the chosen items. Each customer is 
installed at a table and can request a set of items such as: fruit salad, orange juice, etc. 

• REQ3 - Login “Web app”: The employee (administrator) must be logged in to access 
the web app using a username and a password. 

• REQ4 - Maintain an Employee: The admin can add an employee (waiter). The admin 
can view and-or modify a waiter data. The admin can delete an existing waiter and-or 
view the employees list. 

• REQ5 - Maintain Item: The admin can add a new item by entering the necessary data 
for an item. The admin can also view, modify an item. The admin can delete an existing 
item and view the items list. Each item is classified into a single item family. 

• REQ6 - Maintain Item family: The admin can add a new item family by entering the 
required data.  The admin may also view and-or modify an item family data. The admin 
can delete an existing item family, and view the list of existing item families. Examples 
of item family: juice, salad, soda, etc. 

• REQ7 - Maintain Table: The admin can add a new table.  The admin may also view 
and-or modify a specific table data. The admin can delete an existing table and view 
the table list to know the table state (unoccupied, occupied or reserved). 

• REQ8 - View the List of Orders: The admin can view the list of orders. 

• REQ9 - Delete an Order: The admin can delete a customer’s order.  

These requirements will be detailed in the following sections using UML use case diagrams.  

b. REQ expressed in UML Use case diagram 

Identification of Actors. The employees of the RestoSys are the admin and the waiters. 

• Admin: is the manager of the application.  The admin can manage the entire RestoSys. 

The admin can access to the web app via his username and his password (REQ3).  

• Waiter: is responsible for customers' orders. The waiter can access to the mobile app 

via his Smartphone and using his username and his password (REQ1).  

Identification of User Stories and Use Cases. Based on the REQ listed in section A) a, the 
description of each of these REQ is presented below in the form of User Story (see Section 
B.) and Use case descriptions (see Section C).  

B. User Stories Description 

To make requirements visible not only to users but also to developers, the notion of splitting-
up large sets of user stories into smaller stories is applied. Large US are identified with a high 
level of detail. Some of them are split into ‘smaller’ user stories. For example, “US2: Maintain 
Order” can be split into “US 2.1: Add an Order” and “US 2.2: Modify an Order”. The user stories 
with their corresponding description are presented in Table 1.   

Table 1 User stories Identification 

Actor REQ User Story (US) User Story Description 
Waiter REQ1 US1 : “Login” 

Mobile app 

As a  waiter I want  to connect to the RestoSys so 
that I can use its services/ functionality 

REQ2 US2: Maintain Order As a  waiter I want  to maintain orders so that I can 
add or modify a customer's order 

US2.1 : Add an Order As a waiter I want to add an order so that I can add 
a new order as requested by the customer 

US2.2 : Modify an 
Order 

As a  waiter I want  to modify an order so that I can 
modify an order as requested by the customer 



8 
RestoSys Case Study, v1.2 Copyright © 2019 

 REQ3 US3 : “Login” Web 
app 

As an  admin I want  to connect to the RestoSys so 
that I can use its services/ functionality 

 REQ4 US4: Maintain an 
Employee 

As an  admin I want  to maintain employees so that 
I can update the employees data/list 

Admin US4.1 : Add an 
employee 

As an admin I want  to add an employee so that I 
can add a new employee to the employee list 

US4.2 : View the 
Employee List 

As an  admin I want  to view the list of employees 
so that I can view the users list   

US4.3 : View an 
Employee data 

As an  admin I want  to view an employee data so 
that I can view an employee data 

US4.4 : Modify an 
Employee Data 

As an  admin I want  to modify an employee data so 
that I can modify an employee data 

US4.5 : Delete an 
employee 

As an  admin I want  to delete an employee so that 
I can delete an employee 

REQ5 US5 : Maintain Item As an  admin I want  to maintain an item so that I 
can update the items data/list 

US5.1 : Add an Item As an  admin I want  to add an item so that I can 
add a new item 

US5.2 : View the 
Items List 

As an  admin I want  to view the list of items so that 
I can view the items list   

US5.3 : View Item 
data 

As an  admin I want  to view an item data so that I 
can view an item data 

US5.4 : Modify an 
Item 

As an  admin I want  to modify an item data so that 
I can modify an item  

US5.5 : Delete an Item As an  admin I want  to delete an item so that I can 
delete an item 

REQ6 US6 : Maintain Item 
Family 

As an  admin I want  to maintain an item family so 
that I can update the items family data/list 

US6.1 : Add an Item 
family 

As an  admin I want  to add an item family so that I 
can add a new item family 

US6.2 : View the Item 
families list 

As an  admin I want  to view the item families list so 
that I can view the items families list   

US6.3 : View Item 
family data 

As an  admin I want  to view an item family data so 
that I can view an item family data 

US6.4 : Modify an 
Item family 

As an  admin I want  to modify an item family so 
that I can modify an item family 

US6.5 : Delete an Item 
family 

As an  admin I want  to delete an item family so that 
I can delete an item family 

REQ7 US7 : Maintain Table As an  admin I want  to maintain a table so that I 
can update the table data/list 

US7.1 : Add a table As an  admin I want  to add a table so that I can 
add a new table 

US7.2 : View the 
tables List 

As an  admin I want  to view the tables list so that I 
can view the tables list   

US7.3 : View table 
data 

As an  admin I want  to view the table data so that I 
can view table data 

US7.4 : Modify table 
data 

As a  admin I want  to modify table data so that I 
can modify table data  

US7.5 : Delete a table As an  admin I want  to delete a table so that I can 
delete a table 



9 
RestoSys Case Study, v1.2 Copyright © 2019 

REQ8 US8: View the list of 
orders 

As an  admin I want  to view the list of orders so 
that I can view the orders list 

REQ9 US9: Delete an order As an  admin I want  to delete an order so that I can 
delete an order   

C. Use Cases Description 

The global use case diagram, as presented in Figure 2, identifies the main functionality 

provided by RestoSys. Thus, the employees (admin and waiters) must be logged in before 

maintaining data and orders. Each use case identified in the global use case diagram can 

include one or more use cases. As an example, the use case “Maintain Data” in the global use 

case diagram is detailed using four use cases: “Maintain Employee”, “Maintain Item”, “Maintain 

Item family”, and “Maintain Table”. The use case “Maintain Order” for the “Admin” is also 

detailed using “View the List of Orders” and “delete an order” (Figure 3). 

 

 

Figure 2 Global Use Case Diagram  

Use Cases Textual Descriptions. Each detailed use case identified in Figure 2 and Figure 
3 is represented using a use case textual description (see Appendix A). Note that a use case 
textual description represents a discrete unit of interaction between the system RestoSys 
(mobile app and web app) and its users (Waiter and Admin). 
 

 

 

Figure 3 Detailed Use Case Diagram for “Maintain Data” and “Maintain Order” use 
cases 



10 
RestoSys Case Study, v1.2 Copyright © 2019 

REQ1 Use case “Login” Mobile app 

Name: <Login> 
Description: <This use case describes how the employee (the waiter) login to the 
RestoSys> 
Actors: <Primary actor: waiter> 

Begin 
MS /* Main scenario */ 

1. <Waiter><Expletive><The waiter requests for a connection to the RestoSys> 
2. <System><Expletive><The RestoSys asks the waiter to enter his username and 

password> 
3. <Waiter><Request><The waiter enters his/her username and password> [<Waiter 

ID>] 
4. <System><Response & Request> <The RestoSys checks the validity of 

username and password> [<Waiter ID>] [<UserState>] 
5. <System><Response><The RestoSys displays the user state (Connected / Not 

Connected) to the waiter> [<UserState>] 
 

/*If the username and password are valid, the waiter is connected (user state = 
Connected)*/ 

/*Point 4 of login is detailed by using two actions: Response and Request. These 
actions lead to an exchange of data. For Response action, out-Parameters are 
required (username and password). For Request action, one Int-Parameter is required 
(user state). */ 

End 

ES /* Error scenario */  
Begin <Username and password are incorrect, begin at Num '3'> 

6. <System><Request & Response> <The RestoSys displays the message “the 
username and/or the password are invalid”> 

End 
End use case 

 

REQ2: Use case “Maintain Order” 

Name:<Maintain Order> 
Description: <This use case allows the waiter to add or modify a customer's order> 
Actors: <Primary actor: Waiter> 

Begin 

MS /* Main Scenario */ 
Add an Order 

Begin 

1. <System><Expletive><when the waiter logged in, the list of restaurant options is 
displayed>. 

2. <Waiter><Expletive><The waiter presses the option “Add a new order”>. 
3. <Waiter><Request & Response><The waiter enters the table where the 

customer wants to be installed. The system changes the order state from active 
to closed > [<Table ID>&<Table ID>]. 
 

/*If a new order for the same table is entered, the previous order (if any) should be 
closed. In this case, there is always at most one order ‘active’)*/ 
 



11 
RestoSys Case Study, v1.2 Copyright © 2019 

4. <System><Request & Response><The system displays the list of item families> 
[<Item family data>] & [<Item family data>]. 

5. <Waiter><Request & Response><The waiter chooses the item family based on 
the items requested by the customer> [<Item family ID>&<Item familyID>]. 

6. <System><Request & Response><The system displays the list of items 
according to the selected Item families> [<Item Data>&<Item Data>].  

7. <Waiter><Request & Response><The waiter selects the items requested by the 
customer and specifies for each item the recommended quantity and customer's 
comment. The system creates a new order> [<Order Items>] & [<Order Items>]. 

End 

AS /*Alternative Scenario*/  
 

Modify an Order 

Begin 

1. <System><Expletive><When the waiter logged in, the list of restaurant options is 
displayed>. 

2. <Waiter><Expletive><The waiter presses the option “Modify an order”>   
3. <Waiter><Request & Response><The waiter enters the table where the 

customer is installed> [<Table ID>&<Table ID>].  
4. <System><Request & Response><The system displays the list of items ordered 

by the customer with their quantities and comments> [<Order Items> & <Item 
data> & <Order Items>].  

5. <Waiter><Request & Response><The waiter deletes an existing item, modifies 
items' quantities or modifies items' comments. The system updates the order 
data > [<Order Items> & <Order Items>].  

 
End 

ES /* Error Scenario */  
Begin<No table available, begin at Num '2' in the main scenario> 

2.1 <System>< Request & Response><The system displays the message “No table 
available”> 

/* The scenario restarts at point 1. */ 

End 

Begin<Orders list is empty, begin at Num '2' in the alternative scenario> 

2.1 <System>< Request & Response><The system displays the message “Orders list is 
empty”> 

/* The scenario restarts at point 1. */ 

Begin<No table available, begin at Num '7' in the main scenario> 

7.1 <System>< Request & Response><The system displays the message “New order 
not created”> 

/* The scenario restarts at point 1. */ 

End 

Begin<No table available, begin at Num '5' in the alternative scenario> 

5.1 <System>< Request & Response><The system displays the message “The changes 
cannot be saved”> 

/* The scenario restarts at point 1. */ 

End 

 

End 

End use case 



12 
RestoSys Case Study, v1.2 Copyright © 2019 

 

REQ3 Use case “Login” Web app 

Name: <Login> 
Description: <This use case describes how the admin logs into the Web app> 
Actors: <Primary actor: Admin> 

Begin 
MS /* Main scenario */ 

1. <Admin><Expletive><The Admin requests for a connection to the system> 
2. <System><Expletive><The system asks the Admin to enter his username and 

password> 
3. <Admin><Request><The Admin introduces his username and password> 

[<Admin Data>] 
4. <System><DataRecovery><The system checks the validity of username and 

password> [<Admin Data>] 
5. <System><Response><The RestoSys displays the user state (Connected / Not 

Connected) to the admin> [<UserState>] 
/*If the username and password are valid, the Admin is connected*/ 

End 

ES /* Error scenario */  
Begin <Username and password are incorrect, begin at Num '3'> 

6. <System><Response><The system displays the message “the username and 
the password are invalid.”> 

End 
End use case 

REQ4: Use case “Maintain an Employee” 

Name: <Maintain Employee> 
Description: <This use case allows employees update> 
Actors: <Primary actor: Admin> 

Begin 
MS /* Main Scenario*/ 

Add an Employee 

1. <Admin><Expletive><The admin requests to add a new employee>. 
2. <System><Expletive><The system displays the employee form and requires the 

admin to enter the necessary data for adding new employee>. 
3. <Admin><Request><The admin enters the employee data> [<Employee Data>]. 
4. <System><Expletive><The system checks that all required data are entered 

correctly>. 
5. <System><DataRecovery><The system checks if admin is trying to add an existing 

waiter> [<Employee Data>]. 
6. <System><DataPersist><The system adds the new employee> [<Employee 

Data>].  
 

AS /* Alternative Scenario */ 
View the Employees List 

1. <Admin><Request><The admin selects to view the list of employees> [<Employee 
Data>]. 

2. <System><DataRecovery><The system retrieves the list of employees> 
[<Employee Data>]. 

3. <System><Response><The system displays the list of employees> [<Employee 
Data>]. 
 



13 
RestoSys Case Study, v1.2 Copyright © 2019 

View an Employee Data 

1. <Admin><Request><The admin selects the desired employee> [<Employee ID>]. 
2. <System><DataRecovery><The system retrieves employee data from the 

Database> [<Employee Data>].  
3. <System><Response><The system displays the data of the selected employee to 

the admin> [<Employee Data>]. 

Modify an Employee Data 

/*Modify an Employee data should inherit all the default actions from View an Employee 
Data [1,2,3] */  

1. <Admin><Request><The admin modifies employee data that can be changed> 
[<Employee Data>]. 

2. <System><DataPersist><The system saves the change> [<Employee Data>]. 

Delete an Employee 

/*Delete an employee should inherit the default actions from View an Employee Data 
[1,2,3] */  

1. <Admin><Request><The admin chooses the user to be deleted> [<username 
&<password>]. 

2. <System><DataPersist><The system deletes the selected user> [<username>, 
<password>]. 

ES /* Error Scenario */  

Begin <Employee already exists, begin at Num '5' in the main scenario> 

5.1 <System><Response><The system displays the message “Employee already 
exists”> 

/* The scenario restarts at point 2. */ 

End 

 

Begin <The employees list is empty, begin at Num '3' in the alternative scenario 'View 
an Employees List'> 

3.1<System><Response><The system displays the message “The employees list is 
empty”> 

/* The scenario restarts at point 1. */ 

End 

 

Begin <The employees list is empty, begin at Num '3' in the alternative scenario “Modify 
an Employee Data”> 

3.1<System><Response><The system displays the message “The employees list is 
empty”> 

/* The scenario restarts at point 1. */ 

End 

Begin<The employees list is empty, begin at Num '3' in the alternative scenario “Delete 
an Employee”> 

3.1<System><Response><The system displays the message “The employees list is 
empty”> 

/* The scenario restarts at point 1. */ 

End 
End use case 

REQ5: Use case “Maintain Item” 

Name: <Maintain item> 
Description: <This use case allows the admin to add, modify, view and delete an item> 
Actors: <Primary actor: Admin> 



14 
RestoSys Case Study, v1.2 Copyright © 2019 

Begin 

MS /* Main Scenario */ 

Add an Item 

1. <Admin><Expletive><The admin asks for adding a new item>. 
2. <System><Expletive><The system displays the item form and asks the admin to 

enter the necessary data for adding an item>. 
3. <Admin><Request><The admin enters the data of the item and instructs the 

system to validate the addition> [<Item Data>]. 
4. <System><Expletive><The system checks that all required data are entered 

correctly>. 
5. <System><DataRecovery><The system checks if admin is trying to add an existing 

item> [<Item Data>]. 
6. <System><DataPersist><The system adds the new item> [<Item Data>].  

 

AS /* Alternative Scenario */  

View the Items list  

1. <Admin><Request><The admin selects to view the items’ list> [<Item Data>]. 
2. <System><DataRecovery><The system retrieves the list of items> [<Item Data>]. 
3. <System><Response><The system displays the list of items> [<Item Data>]. 

 
View an Item Data 

1. <Admin><Request><The admin selects the desired item> [<Item ID>]. 
2. <System><DataRecovery><The system retrieves the item data from the 

Database> [<Item Data>]. 
3. <System><Response><The system displays the selected item data> [<Item 

Data>]. 

Modify an Item 

/*Modify an Item should inherit all the default actions from View Item Data [1,2,3] */  
 

1. <Admin><Request><The admin modifies the desired fields (name, price, quantity, 
image, etc.)> [<Item Data>]. 

2. <System><DataPersist><The system saves the change> [<Item Data>]. 

Delete an Item 

/*Delete an Item should inherit the default actions from View Item Data [1,2,3] */  
1. <Admin><Request><The admin selects the item to be deleted> [<Item ID>]. 
2. <System><DataPersist><The system deletes the selected item> [<Item ID>]. 

ES /* Error Scenario */ 

Begin<Item already exists, begin at Num '5' in the main scenario> 

5.1 <System><Response><The system displays the message “Item already exists”> 
/* The scenario restarts at point 2. */ 

End 

Begin<The Item list is empty, begin at Num '3' in the alternative scenario “Modify an 
Item”> 

3.1<System><Response><The system displays the message “The item list is empty”> 

/* The scenario restarts at point 1. */ 

End 

 

Begin<The Item list is empty, begin at Num '3' in the alternative scenario “Delete an 
Item”> 



15 
RestoSys Case Study, v1.2 Copyright © 2019 

3.1<System><Response><The system displays the message “The item list is empty”> 
/* The scenario restarts at point 1. */ 

End 

End use case 

 

REQ 6: Use case “Maintain Item Family” 

Name: <Maintain Item Family> 
Description: <This use case allows the admin to add, modify, view and delete an item 
family> 
Actors: <Primary actor: Admin> 

Begin 
MS /* Main Scenario */ 

Add an Item Family 

1. <Admin><Expletive><The admin requests for adding a new item family>. 
2. <System><Expletive><The system displays the item family form and asks the 

admin to enter the necessary data for adding an item family>. 
3. <Admin><Request><The admin enters the data of the item family and instructs the 

system to validate the addition> [<Item Family Data>]. 
4. <System><Expletive><The system checks that all required data are entered 

correctly>. 
5. <System><DataRecovery><The system checks if the Item Family already exists> 

[<Item Family Data>]. 
6. <System><DataPersist><The system adds the new item family> [<Item Family 

Data>].  
 

AS /* Alternative Scenario */ 
View Item Families List 

1. <Admin><Request><The admin selects to view the item families list> [<Item 
Families Data>]. 

2. <System><DataRecovery><The system retrieves the item families list> [<Item 
Family Data>]. 

3. <System><Response><The system displays the item families list> [<Item Family 
Data>]. 

View Item Family Data 

1. <Admin><Request><The admin selects the desired item family> [<Item family ID>]. 
2. <System><DataRecovery><The system retrieves the item family data from the 

Database> [<Item family Data>]. 
3. <System><Response><The system displays the selected Item family data to the 

admin> [<Item family Data>]. 

Modify an Item Family 

/*Modify an Item Family should inherit all the default actions from View Item Family 
Data [1,2,3] */  

1. <Admin><Request><The admin modifies the desired fields> [<Item family Data>]. 
2. <System><DataPersist><The system saves the change> [<Item family Data>]. 

Delete an Item Family 

/*Delete an Item Family should inherit the default actions from View Item Family Data 
[1,2,3] */  

1. <Admin><Request><The admin selects the item family to be deleted> [<Item family 
ID>]. 



16 
RestoSys Case Study, v1.2 Copyright © 2019 

2. <System><DataPersist><The system deletes the selected item family> [<Item 
family ID>]. 

ES /* Error Scenario */ 

Begin<Item Family already exists, begin at Num '5' in the main scenario> 

5.1 <System><Response><The system displays the message “Item family already 
exists”> 

/* The scenario restarts at point 2. */ 
End 

Begin<The Item Family list is empty, begin at Num '3' in the alternative scenario “Modify 
an Item Family”> 

3.1<System><Response><The system displays the message “The item family list is 
empty”> 

/* The scenario restarts at point 1. */ 

End 

 

Begin<The Item Family list is empty, begin at Num '3' in the alternative scenario “Delete 
an Item Family”> 

3.1<System><Response><The system displays the message “The item family list is 
empty”> 

/* The scenario restarts at point 1. */ 

End 

End use case 

 

REQ 7: Use case “Maintain Table” 

Name: <Maintain Table> 
Description: <This use case allows the admin to add, view, modify and delete a table> 
Actors: <Primary actor: Admin> 

Begin 
MS /* Main Scenario */ 

Add a Table 

1. <Admin><Expletive><The admin requests to add a new table>. 
2. <System><Expletive><The system displays the table form and asks the admin to 

enter the necessary data for adding a table>. 
3. <Admin><Request><The admin enters all the table data> [<Table Data>]. 
4. <System><Expletive><The system checks that all required data are entered 

correctly>. 
5. <System><DataRecovery><The system checks if the table already exists> [<Table 

Data>]. 
6. <System><DataPersist><The system adds the new table> [<Table Data>].  

 

AS /* Alternative Scenario */  

View Tables List  

1. <Admin><Request><The admin selects to view the tables list> [<Table Data>]. 
2. <System><DataRecovery><The system retrieves the tables list> [<Table Data>]. 
3. <System><Response><The system displays the tables list > [<Table Data>]. 

 
View a Table Data 

1. <Admin><Request><The admin selects the desired table> [<Table ID>]. 



17 
RestoSys Case Study, v1.2 Copyright © 2019 

2. <System><DataRecovery><The system retrieves the Table Data from the 
Database> [<Table ID>]. 

3. <System><Response><The system displays the data of the selected table to the 
admin> [<Table Data>]. 
 

Modify Table Data 

/*Modify Table Data should inherit all the default actions from View Table Data [1,2,3] */  
1. <Admin><Request><The admin modifies the table data> [<Table Data>]. 
2. <System><DataPersist><The system saves the change> [<Table Data>]. 

 
Delete a Table 

/*Delete a Table should inherit the default actions from View Table Data [1,2,3] */  
1. <Admin><Request><The admin chooses the table to be deleted> [<Table ID>]. 
2. <System><DataPersist><The system deletes the selected table> [<Table ID>]. 

ES /* Error Scenario */  

Begin<Table already exists, begin at Num '5' in the main scenario> 

5.1 <System><Response><The system displays the message “Table already exists”> 
/* The scenario restarts at point 2. */ 

End 

Begin<The Table list is empty, begin at Num '3' in the alternative scenario “Modify Table 
Data”> 

3.1<System><Response><The system displays the message “Tables list is empty”> 

/* The scenario restarts at point 1. */ 

End 

Begin<Tables list is empty, begin at Num '3' in the alternative scenario 'Delete a Table> 

3.1<System><Response><The system displays the message “Tables list is empty”> 

/* The scenario restarts at point 1. */ 

End 

End use case 

REQ 9: Use case “View the List of Orders” 

Name: <View the List of Orders> 
Description: <This use case allows to view the list of orders> 
Actors: <Primary actor: Admin> 

Begin 

MS /* Main Scenario */ 

View the List of Orders 

1. <Admin><Request><The admin selects to view the orders list> [<Order Data>]. 
2. <System><DataRecovery><The system retrieves the orders list> [<Order Data>]. 
3. <System><Response><The system displays the orders list> [<Order Data >]. 

 

ES /* Error Scenario */ 

Begin<Orders list is empty, begin at Num '2' in the main scenario> 

2.1 <System><Response><The system displays the message “Orders list is empty”> 
/* The scenario restarts at point 1. */ 

End 

REQ 10: Use Case “Delete an Order” 

Name: <Delete an Order> 
Description: <This use case allows to delete a customer’s order> 
Actors: <Primary actor: Admin> 



18 
RestoSys Case Study, v1.2 Copyright © 2019 

Begin 

MS /* Main Scenario */ 

Delete an Order 

1. <Admin><Request><The admin selects the order to be deleted from the orders 
list> [<Order ID>]. 

2. <System><DataPersist><The system deletes the order> [<Order ID>]. 

End 

ES /* Error Scenario */ 

Begin<Orders list is empty, begin at Num '2' in the main scenario> 

2.1 <System><Response><The system displays the message “Orders list is empty”> 
/* The scenario restarts at point 1. */ 

End 
 

 

 

D. NFR - Non-Functional Requirements 

Non-functional requirements define some quality requirements such as: performance, usability 
and security. The mobile app interface must be easy to use, simple and clear. Moreover, the 
web app must be compatible with any operating system, easy to use, understandable; with a 
“good response time”. It is also evident that RestoSys (including web and mobile applications) 
requires the presence of an internet connection. 

E. PRC - Project Requirements and Constraints 

The PRC address types of constraints surrounding the software development project, such as 
the competing demands of time, cost, and scope limitations on the project resources needed; 
dependencies on other projects, data storage space, etc.  



19 
RestoSys Case Study, v1.2 Copyright © 2019 

2 

2 THE MEASUREMENT STRATEGY PHASE 

2. 1 Measurement Purpose 

The purpose of the measurement is to estimate the development efforts for the mobile app and 

the web app separately, based on the size of the RestoSys software according to its 

Requirements, as specified in Chapter 1 of this case study. 

2. 2 Measurement Scope 

The scope is all functionality as specified in the functional requirements for the software as 

provided in section 1.4 A. The RestoSys software is in the application layer. The Requirements 

(REQ) Measurement Purpose requires a decomposition of its software in a mobile app 

component and a web app component. Hence, because of the Measurement Purpose, a 

measurement scope for each of both components is defined. 

2. 3 Identification of Functional Users 

The human functional users of the RestoSys are the employee (admin and waiter).  

• The Admin: is the manager of the application. The Admin is entitled to manage the 

entire RestoSys and specify users and their individual rights. 

• The Waiter: is responsible for adding or modifying the customers’ orders. 

Note that the DB Server is not an actor (functional user) of RestoSys, as the RestoSys 

requirements do not require data to be stored or retrieved with help of other software (i.e. 

another functional user). Rather it is merely a storage device, i.e. the physical implementation 

of the web app’s persistent storage. 

Figure 4 presents the contextual diagram for the RestoSys showing all its functional users. 

 

 

 

Figure 4 Contextual diagram 

 



20 
RestoSys Case Study, v1.2 Copyright © 2019 

Figure 5 presents an example of data exchanges between mobile and web applications for 

REQ1 (Login for mobile app) and REQ3 (Login for web app). For example, login for mobile 

app is triggered by an Entry from the waiter which consists of the parameters (user name and 

password). The measurement details are provided in Section 4.1.  

 

 

Figure 5 Data exchanges between Client (Mobile app) and Server (Web app) 
components For REQ1 and REQ3 

 

2. 4 Other Measurement Strategy Parameters 

A. Level of Granularity 

The REQ of the RestoSys are at two levels of granularity. The first level of granularity is that 

of the Use Case global diagram (Figure 2). At this level, the data movements cannot be 

observed. For such cases, a COSMIC approximation method can be applied (COSMIC 

2015b). However, since each use case identified in the first level can be detailed in the second 

level (such as Maintain Data which is detailed in Figure 3), the required level to apply COSMIC 

is where use cases are detailed using their textual description. More specifically, actions in a 

use case can be associated with the COSMIC data movement, as their level of granularity is 

the standard level, the ‘functional process level of granularity’. 

B. Decomposition 

Figure 6 presents the decomposition for the RestoSys. The Mobile App interacts with the Web 

App via eXit/Entry data movements. The web app can require data to be stored or retrieved 

to/from persistent storage. Here, the architecture used to implement this system is 2-tier 

architecture. The two major components are: the Mobile app and the Web app. 

 

Mobile App Web App
E

X

 

Figure 6 Decomposition  



21 
RestoSys Case Study, v1.2 Copyright © 2019 

3 

3 THE MAPPING PHASE 

3. 1 Identification of the Functional Processes and the Software Triggering Events 

From the REQ, the following triggering events are identified. For each functional process, there 

is only one triggering event (see Table 2). It is to be noted that when a functional process is 

required to obtain/save some data from/to another piece of software, it is the case of 

client/server’ relationship. The REQ of the client component “Mobile App” can identify the 

server component “Web App” as one of its functional users, and vice versa. In addition, there 

is no standard mapping from a Use Case to a COSMIC Functional Process. Some Use Cases 

are mapped to several Functional Processes (e.g., the UC “Add an Order” is mapped to FP 2 

and FP3). Other use cases are mapped to just one FP (e.g., the UC “Add an Employee” is 

mapped to FP8). 

Table 2 Triggering Event Identification 

REQ Functional Processes Triggering Events 
REQ 1: 
Login 
“Mobile 
App” 

FP 1: Login 

The employee (waiter) needs to access to the 
login form 

REQ 2: 
Maintain 
Order 

FP 2: Add order’s data The waiter requires to add a new order 

FP 3: Create an order The web app needs to create a new order 

FP 4: Modify order’s data The waiter requires to modify an existing order 

FP 5: Retrieve selected table data 
The mobile app requires to retrieve the selected 
table data  

FP 6: Save modified data 
The mobile app requires to save the modified 
data 

REQ3: 
Login “Web 
app” 

FP 7: Login 

The employee (admin and waiter) needs to 
access to the login form (FP1 sends the login 
data (waiter data) to the web application for 
verification) 

REQ 4: 
Maintain an 
Employee 

FP 8: Add an employee The admin requires to add an Employee (a 
waiter) 

FP 9: View the employees list The admin needs to view the Employees list 

FP 10: View an employee data The admin requires to view an Employee data 

FP 11: Modify an employee data The admin requires to modify an Employee data 

FP 12: Delete an employee The admin requires to delete an Employee 

REQ 5: 
Maintain 
Item 

FP 13: Add an Item The admin requires to add a new item 

FP 14: View the items list The admin requires to view the items list 

FP 15: View an Item data The admin requires to view the item data 

FP 16: Modify an Item The admin asks to modify an item 

FP 17: Delete an Item  The admin requires to delete an item 

REQ 6: 
Maintain 
Item Family 

FP 18: Add an Item Family The admin requires to add a new item family 

FP 19: View Item Families List The admin requires to view the item families list 

FP 20: View Item Family Data The admin requires to view an item family data 

FP 21: Modify an Item Family The admin asks to modify an item family 

FP 22: Delete an Item Family The admin requires to delete an item family 

REQ 7: 
Maintain 
Table 

FP 23: Add a Table The admin requires to add a table 

FP 24: View Tables List The admin requires to view the tables list 

FP 25: View a Table Data The admin requires to view a table Data 



22 
RestoSys Case Study, v1.2 Copyright © 2019 

FP 26: Modify Table Data The admin asks to modify a table data 

FP 27: Delete a Table The admin requires to delete a table 

REQ 8: 
View the 
List of 
Orders 

FP 28: View the List of Orders The admin requires to view the list of orders 

REQ 9: 
Delete an  
Order 

FP 29: Delete an Order The admin requires to delete an order 

 

3. 2 Identification of Objects of Interest, Data Groups, and Data Attributes 

From the REQ, seven objects of interest are identified. These are listed in Table 3 with their 

data groups and data attributes. 

Table 3 List of Objects of Interest, Data Groups, and Data attributes 

REQ Objects of 
Interest 

Data Groups Data attributes Example 

REQ 1 
REQ 3 
 

Employee 

Employee ID username, password  
username: alx84 
password: 123 

UserState 

userstate 
(Connected/Not 
Connected) 

userstate: connected 

Employee Data 

EmpNumber 
username, password, 
name, phone_number, 
address, 
job  

EmpNumber: W2 
username: alx84 
password: 123 
name: Alex 
phone_number: 
22234567 
address: Sfax, Tunisia 
job: waiter 

REQ 2 
REQ 7 

Table 

Table ID table number table number: 1 

Table Data 
table number, state, 
capacity 

table number: 1 
state: occupied  
capacity: 2 

Set of Tables 

Unoccupied Tables 
table number, state, 
capacity 

table number: 2 
state: unoccupied  
capacity: 4 

All Table Data 
table number, state, 
capacity 

table number: 3 
state: unoccupied  
capacity: 5 

REQ 2 
REQ 6 

Item family Item family Data 
item family number, 
designation 
 

item family number: 1 
designation: Juice 

item family number: 2 
designation: soda 

item family number: 3 
designation: Cheap 
meals 

REQ 2 Item Item Data item number,  item number: 1  



23 
RestoSys Case Study, v1.2 Copyright © 2019 

REQ 5 
 

item family number 
designation,  
image,  
price,  
quantity 
cheap price 
 
 
 
 

item family number: 1 
designation: orange 
juice 
image: orange.jpg 
price: 1 D 
quantity: 30 
cheap price: 0.5D 

item number: 2  
item family number: 2 
designation: coca cola 
image: coca.jpg 
price: 2 D 
quantity: 100 
cheap price: 1D 

Item ID item number item number: 1 

REQ 2 
REQ 7 
REQ 8 
REQ 9 

Order 

Order ID order number order number: 20 

Order Data 

EmpNumber 
order number,  
table number, 
order state 
(active/closed),  
date, time 

EmpNumber: W2 
order number: 20 
table number: 1  
order state: active 
date: 05/07/2016 
time: 8:00 pm 

Table ID table number table number: 1 

REQ 2  
REQ 6 
 

Order Item 
Order Items 

order number,  
item number, 
quantity, 
comment 

order number: 20 
item number: 1 
quantity: 3 
comment: none 
item number:  2 
quantity: 1 
comment: with ice 

Item family ID item family number item family number: 1 

From 
REQ 1 
to REQ 
9 

Messages E/C message Message description 
Message description: 
“Orders list is empty” 

 

 

Figure 7  Data Model Diagram 

Figure 7 presents the data model diagram for the RestoSys. Symbol | represents a one-and-
only-one relationship. For instance, an item belongs to a single one item family. The crow’s 
foot symbol represents a one-or-many relationships. For instance, an employee manages 
multiple customers’ orders. 



24 
RestoSys Case Study, v1.2 Copyright © 2019 

4 

4 THE MEASUREMENT PHASE 

4. 1 Functional Size Measured from REQ - Natural Language 

A.  For Mobile App 

In this section, we give a detailed measurement of the functional size of the mobile app. 

FP1: Login “Mobile App” 
Triggering event: The employee (waiter) access to the login form 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Employee 
Enter username and 
password 

Employee ID Employee E 1 

Web app  The mobile app provides 
waiter data to the web app 

Employee ID Employee X 1 

Web app The mobile app receives 
user state (Connected/Not 
connected) 

UserState 
 
Employee 

E 1 

Employee  

The mobile app displays 
the userstate 
(Connected/Not 
connected) 

UserState Employee X 1 

Web app The mobile app receives 
the Error/Confirmation 
message  

E/C Message Messages E 1 

Employee  

The mobile app displays 
Error/Confirmation 
messages from the web 
application 

E/C Message Messages X 1 

Total size = 6 CFP 

 

FP 2: Add Order’s Data 
Triggering event: The employee (waiter) adds a new order 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

 Employee 
The waiter enters the 
table where the customer 
wants to be installed 

Table ID Order E 1 

Web app  

The mobile app sends 
the selected table to the 
web app  
and then the web app 
creates a new order 

Table ID Order X 1 

Web app  The mobile app receives 
the item families list 

Item family 
data 

Item 
family 

E 1 

Employee 
The mobile app displays 
the item families list to 
the waiter 

Item family 
data 

Item 
family 

X 1 



25 
RestoSys Case Study, v1.2 Copyright © 2019 

Employee 

The waiter enters the 
item family based on the 
items requested by the 
customer 

Item family ID 
Order 
Item 

E 1 

Web app  The mobile app sends 
the selected item family 
to the web app  

Item family ID 
Order 
Item 

X 1 

Web app 
The mobile app receives 
the item list of the 
selected family 

Item Data Item E 1 

Employee 
The mobile app displays 
the list of items to the 
waiter 

Item Data Item X 1 

Employee 

The waiter enters the 
items required by the 
customer and specifies 
for each item the 
recommended quantity 
and the customer 
comments 

Order Items 
Order 
item 

E 1 

Web app  The mobile app sends 
the selected items, 
recommended quantities 
and customer's 
comments to the web 
app  

Order Items 
Order 
item 

X 1 

Web app  The mobile app receives 
Error/Confirmation 
messages from the web 
app  

E/C Message Messages E 1 

Employee The mobile app displays 
Error/Confirmation 
messages to the waiter 

E/C Message Messages X 1 

Total size = 12 CFP 

 

FP 4: Modify Order’s Data 
Triggering event: The employee (waiter) modifies an existing order 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Employee 
The waiter enters the 
table where the customer 
is installed 

Table ID Table E 1 

Web app  
The mobile app sends the 
selected table to the web 
app  

Table ID Table X 1 

Web app  

The mobile app receives 
the list of items 
previously selected by 
the customer with their 
quantities and comments  

Order Items 
Order 
item 

E 1 



26 
RestoSys Case Study, v1.2 Copyright © 2019 

FP 4: Modify Order’s Data 
Triggering event: The employee (waiter) modifies an existing order 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Employee 

The mobile app displays 
the items previously 
selected by the customer 
with their quantities and 
comments to the waiter 

Order Items 
Order 
item 

X 1 

Employee 

The waiter deletes the 
existing item, modifies 
items' quantities and/or 
modifies items' 
comments 

Order Items 
Order 
item 

E 1 

Web app  
The mobile app sends 
the modified items to the 
web app  

Order Items 
Order 
item 

X 1 

Web app  The mobile app receives 
Error/Confirmation 
messages from the web 
app  

E/C Message Messages E 1 

Employee The mobile app displays 
Error/Confirmation 
messages to the waiter 

E/C Message Messages X 1 

Total size = 8 CFP 

 

The total functional size of the mobile app is the sum of the sizes of its three functional 
processes, that is: 

6 CFP + 12 CFP + 8 CFP = 26 CFP 

 

B. For Web app  

The web app includes 27 functional processes. In this section, we give a detailed measurement 
of the functional size of the web app.  

 

FP3: Create an order  
Triggering event: The web app receives the selected items  

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects of 

interest 

Data 
Movement 

Type 
CFP 

Mobile App 
The web app receives the 
selected items, quantities 
and customer comments 

Order Items Order Items E 1 

 The web app creates the 
new order 

Order Data Order W 1 

Mobile App The web app sends 
Error/Confirmation 
messages to the mobile 
app 

E/C 
Message 

Message X 1 

Total size = 3 CFP 



27 
RestoSys Case Study, v1.2 Copyright © 2019 

 

FP5: Retrieve selected table data 
Triggering event: The mobile app sends the selected table 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Mobile App 
The web app receives the 
selected table  

Table ID Table E 1 

 
The web app retrieves the 
list of item families 
selected by the customer 

Order Items Order Item R 1 

Mobile App 

The web app sends  the 
list of item families 
selected by the customer 
to the mobile app 

Order Items Order Item X 1 

 
The web app retrieves the 
list of items selected by 
the customer 

Item data Item R 1 

 
The web app sends  the 
list of items selected by 
the customer  

Item data  Item X 1 

Total size = 5 CFP 

 

FP 6: Save modified data  
Triggering event: The mobile app sends the modified data  

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Mobile App 
The web app receives the 
modified items 

Order Items Order E 1 

 
The web app updates the 
order data 

Order Data Order W 1 

Mobile App 
The web app displays the 
Error/Confirmation 
message  

E/C 
Messages 

Message  X 1 

Total size = 3 CFP 

 

FP7: Login 
Triggering event: The employee (admin) access to the login form 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Employee 
Enter username and 
password 

Employee ID Employee E 1 

  The web app checks the  
validity of admin data  

Employee ID Employee R 1 

Employee 
The web app displays the 
user state (Connected/ 
Not connected) 

UserState Employee X 1 



28 
RestoSys Case Study, v1.2 Copyright © 2019 

Employee 
The web app displays 
Error/Confirmation 
messages  

E/C Message Messages X 1 

Total size = 4 CFP 

 

FP8: Add an Employee 
Triggering event: The admin adds an employee 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin enters the 
employee data 

Employee 
Data 

Employee E 1 

 

The web app retrieves 
the employee’s data to 
verify if the employee 
exists 

Employee 
Data 

Employee R 1 

 
The web app adds the 
new employee 

Employee 
Data 

Employee W 1 

Admin 
the web app displays 
Error/Confirmation 
messages 

E/C Message Messages X 1 

Total size = 4 CFP 

 

FP9: View the Employees list 
Triggering event: The admin views the users list 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin selects to 
view the employees list  

Employee 
Data 

Employee E 1 

 
The web app retrieves 
the employees list  

Employee 
Data 

Employee R 1 

Admin 
The web app displays 
the employees list   

Employee 
Data 

Waiter X 1 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 4 CFP 

 

FP10: View an Employee data 
Triggering event: The admin asks for an employee data 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin selects the 
desired employee 

Employee 
Data 

Employee E 1 

 
The web app retrieves 
user data from the 
Database  

Employee 
Data 

Employee R 1 



29 
RestoSys Case Study, v1.2 Copyright © 2019 

Admin 
The web app displays the 
data of the selected 
waiter 

Employee 
Data 

Employee X 1 

Total size = 3 CFP 

 

FP11: Modify an Employee Data 
Triggering event: The admin modifies employee data 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin modifies 
employee data that can 
be changed 

Employee 
Data 

Employee E 1 

 The web app saves the 
change 

Employee 
Data 

Employee W 1 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 3 CFP 

 

FP12: Delete an Employee 
Triggering event: The admin deletes an employee 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin enters the 
employee to be deleted 

Employee 
ID 

Employee E 1 

 
The web app deletes the 
selected employee 

Employee 
ID 

Employee W 1 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 3 CFP 

 

FP13: Add an Item 
Triggering event: The admin adds a new item 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin enters the 
data of the item 

Item Data Item E 1 

 

The web app retrieves 
the items data to verify if 
the admin adds an 
existing item 

Item Data Item R 1 

 
The web app adds the 
new item 

Item Data Item W 1 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 4 CFP 



30 
RestoSys Case Study, v1.2 Copyright © 2019 

 

FP14: View the items list 
Triggering event: The employees view the items list 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Mobile app 
The web app receives the 
waiter request 

Item family 
ID 

 

Order 
Item 

E 1 

Admin 
The admin selects to 
view the items list 

Item Data Item E 1 

 
The web app retrieves 
the items list  

Item Data Item R 1 

Admin/ 
Mobile app 

The web app 
displays/sends the items 
list   

Item Data Item X 1 

Admin 
Mobile app 

The web app 
displays/sends 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 5 CFP 

 

FP15: View an Item data 
Triggering event: The admin views an item data 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin enters the 
desired item 

Item ID Item  E 1 

 
The web app retrieves 
the item data from the 
Database 

Item Data Item  R 1 

Admin 
The web app displays 
the data of the selected 
item  

Item Data Item  X 1 

Total size = 3 CFP 

 

FP16: Modify an item 
Triggering event: The admin modifies an item 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Admin 

The admin modifies the 
desired fields (name, 
price, quantity, image, 
etc.) and asks the web 
app to update the data 
of the item 

Item Data Item E 1 

 The web app saves the 
change 

Item Data Item W 1 



31 
RestoSys Case Study, v1.2 Copyright © 2019 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C Message Messages X 1 

Total size = 3 CFP 

 

FP17: Delete an Item 
Triggering event: The admin deletes an item 

Functional 
User 

Sub-Process 
Description 

Data 
Group 

Objects 
of 

interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin selects the item 
to be deleted 

Item ID Item E 1 

 
The web app deletes the 
selected item 

Item ID Item W 1 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 3 CFP 

 

FP18: Add an item family 
Triggering event: The Admin adds a new item family 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin enters the data 
of the item family  

Item Family 
Data 

Item 
Family 

E 1 

 

The web app retrieves 
the item families’ data to 
verify if the admin adds 
an existing item family 

Item Family 
Data 

Item 
Family 

R 1 

 
The web app adds the 
new item family 

Item Family 
Data 

Item 
Family 

W 1 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 4 CFP 

 

FP19: View Item families list 
Triggering event: The employees view the item families list 

Functional 
User 

Sub-Process 
Description 

Data 
Group 

Objects 
of 

interest 

Data 
Movement 

Type 
CFP 

Mobile app The web app receives 
the waiter requests 

Table ID Order E 1 

Admin 
The admin selects to 
view the item families list 

Item Family 
Data 

Item 
Family 

E 1 

 
The web app retrieves 
the item families list  

Item Family 
Data 

Item 
Family 

R 1 



32 
RestoSys Case Study, v1.2 Copyright © 2019 

Admin/Mobile 
app 

The web app 
displays/sends the item 
families list   

Item Family 
Data 

Item 
Family 

X 1 

Admin/Mobile 
app 

The web app 
displays/sends 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 5 CFP 

 

FP20: View Item family data 
Triggering event: The admin views an item family data 

Functional 
User 

Sub-Process Description 
Data 

Group 

Objects 
of 

interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin enters the 
desired Item Family 

Item 
Family ID 

Item 
Family 

E 1 

 
The web app retrieves the 
Item Family data from the 
Database 

Item 
Family 
Data 

Item 
Family 

R 1 

Admin 
The web app displays the 
data of the selected Item 
Family to the admin 

Item 
Family 
Data 

Item 
Family 

X 1 

Total size = 3 CFP 

 

FP21: Modify an item family  
Triggering event: The admin modifies an item family  

Functional 
User 

Sub-Process 
Description 

Data 
Group 

Objects 
of 

interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin enters 
modified fields (name, 
image, color)  

Item family 
Data 

Item 
Family 

E 1 

 The web app saves the 
change 

Item family 
Data 

Item 
Family 

W 1 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 3 CFP 

 

FP22: Delete an item family 
Triggering event: The admin deletes an item family 

Functional 
User 

Sub-Process 
Description 

Data 
Group 

Objects 
of 

interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin enters the 
family items to be deleted 

Item family 
ID 

Item 
Family 

E 1 

 
The web app deletes the 
selected family item 

Item family 
ID 

Item 
Family 

W 1 



33 
RestoSys Case Study, v1.2 Copyright © 2019 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 3 CFP 

 

FP23: Add a table  
Triggering event: The admin adds a table 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin enters the 
table data 

Table Data Table E 1 

 
The system checks if the 
table already exists  

Table Data Table R 1 

 
The web app adds the 
new table  

Table Data Table W 1 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 4 CFP 

 

FP24: View Tables list 
Triggering event: The employee (admin or waiter) views the tables list 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Mobile app 
The mobile app selects to 
view the tables list 

Unoccupied 
Tables 

Set of 
Tables 

E 1 

Admin 
The admin selects to view 
the tables list 

All table 
Data 

Set of 
Tables 

E 1 

 
The web app retrieves the 
Tables list  

Table Data Table R 1 

Admin / 
Mobile app 

The system displays / 
sends the Tables list   

Table Data Table X 1 

Mobile app 
/ Admin 

The web app displays 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 5 CFP 

 

FP25: View a table data 
Triggering event: The admin views table data 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin enters the 
desired table 

Table ID Table  E 1 

 
The web app retrieves 
the Table data from the 
database 

Table Data Table R 1 



34 
RestoSys Case Study, v1.2 Copyright © 2019 

Admin 
The web app displays the 
data of the selected table 
to the admin 

Table Data Table X 1 

Total size = 3 CFP 

 

FP26: Modify table data 
Triggering event: The admin modifies table data 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin enters  
modifies\d table data 

Table Data Table E 1 

 
The web app saves the 
change 

Table Data Table W 1 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C Message Messages X 1 

Total size = 3 CFP 

 

FP27: Delete a table  
Triggering event: The admin deletes a table 

Functional 
User 

Sub-Process 
Description 

Data Group 
Objects 

of 
interest 

Data 
Movement 

Type 
CFP 

Admin 
The admin enters the 
table to be deleted 

Table ID Table E 1 

 
The web app deletes the 
selected table 

Table ID Table W 1 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C Message Messages X 1 

Total size = 3 CFP 

 

FP28: View the List of Orders 
Triggering event: The admin views the list of orders 

Functional 

User 

Sub-Process 

Description 
Data Group 

Objects of 

interest 

Data 

Movement 

Type 

CFP 

Admin 
The admin selects to 
view the orders list 

Order Data Order E 1 

 
The web app retrieves 
the orders data 

Order Data Order R 1 

Admin 
The web app displays 
the orders list 

Order Data Order X 1 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 4 CFP 

 



35 
RestoSys Case Study, v1.2 Copyright © 2019 

FP29: Delete an order  
Triggering event: The admin deletes an order  

Functional 

User 
Sub-Process 
Description 

Data Group 

Objects 

of 

interest 

Data 

Movement 

Type 

CFP 

Admin 
The admin selects the 
order to be deleted 

Order ID Order E 1 

 
The web app deletes the 
selected order 

Order ID Order W 1 

Admin 
The web app displays 
Error/Confirmation 
messages 

E/C 
Message 

Messages X 1 

Total size = 3 CFP 

 

The total functional size of the web app is the sum of the sizes of its 26 functional processes, 
that is: 

3 CFP + 5 CFP + 3 CFP + 4 CFP + 4 CFP + 4 CFP + 3 CFP + 3 CFP + 3 CFP + 4 CFP + 5 
CFP + 3 CFP + 3 CFP + 3 CFP + 4 CFP + 5 CFP + 3 CFP + 3 CFP + 3 CFP + 4 CFP + 5 CFP 
+ 3 CFP + 3 CFP + 3 CFP + 4 CFP + 3 CFP = 93 CFP 

 

C. For the Whole System 

The total size of RestoSys is then equal to the sum of functional sizes of mobile and web apps 
(26 CFP + 93 CFP) = 119 CFP. 

 

4. 2 Functional Size Measured from REQ – US and UML UC Textual Description 

A. Using User Stories Description 

 

The functional size of RestoSys using User stories description are presented in Table 4. A 

large user story usually includes a number of Functional Processes. To quantify the size of 

RestoSys through user stories, Table 4 identifies the set of functional processes for each user 

story with their size measurement.   

 

 

Table 4: Sizing RestoSys through US description with their corresponding functional 
processes 

User Story (US) Functional Processes CFP 

US1 : “Login” Mobile 
app 

FP 1: Login FS(US1) = 6 CFP 

US2: Maintain Order  FS(US2) = 31 CFP 

US2.1 : Add an Order FP 2: Add order’s data FS(FP2) = 12 CFP FS(US2.1) = 
15CFP FP 3: Create an order FS(FP3) = 3 CFP 

US2.2 : Modify an Order FP 4: Modify order’s data FS(FP4) = 8 CFP   
FS(US2.2) = 

16CFP 
 

FP 5: Retrieve selected table 
data 

FS(FP5) = 5 CFP 

FP 6: Save modified data FS(FP6) = 3 CFP 

US3 : “Login” Web 
app 

FP 7: Login FS(US3) = 4 CFP 



36 
RestoSys Case Study, v1.2 Copyright © 2019 

US4: Maintain an 
Employee 

 FS(US4) = 17 CFP 

US4.1 : Add an employee FP 8: Add an employee FS(US4.1) = 4 CFP 

US4.2 : View the 
Employee List 

FP 9: View the employees list FS(US4.2) = 4 CFP 

US4.3 : View an 
Employee data 

FP 10: View an employee data FS(US4.3)= 3CFP 

US4.4 : Modify an 
Employee Data 

FP 11: Modify an employee 
data 

FS(US4.4)= 3CFP 

US4.5 : Delete an 
employee FP 12: Delete an employee 

FS(US4.5)= 3CFP 

US5 : Maintain Item  FS(US5)= 18 CFP 

US5.1 : Add an Item FP 13: Add an Item FS(US5.1)= 4CFP 

US5.2 : View the Items 
List FP 14: View the items list 

FS(US5.2)= 5CFP 

US5.3 : View Item data FP 15: View an Item data FS(US5.3)= 3CFP 

US5.4 : Modify an Item FP 16: Modify an Item FS(US5.4)= 3CFP 

US5.5 : Delete an Item FP 17: Delete an Item  FS(US5.5)= 3CFP 

US6 : Maintain Item 
Family 

 FS(US6)= 18 CFP 

US6.1 : Add an Item 
family FP 18: Add an Item Family 

FS(US6.1)= 4CFP 

US6.2 : View the Item 
families list FP 19: View Item Families List 

FS(US6.2)= 5CFP 

US6.3 : View Item family 
data FP 20: View Item Family Data 

FS(US6.3)= 3 CFP 

US6.4 : Modify an Item 
family FP 21: Modify an Item Family 

FS(US6.4)= 3CFP 

US6.5 : Delete an Item 
family FP 22: Delete an Item Family 

FS(US6.5)= 3CFP 

US7 : Maintain Table  FS(US7)= 18 CFP 

US7.1 : Add a table FP 23: Add a Table FS(US7.1)= 4CFP 

US7.2 : View the tables 
List FP 24: View Tables List 

FS(US7.2)= 5CFP 

US7.3 : View table data FP 25: View a Table Data FS(US7.3)= 3CFP 

US7.4 : Modify table data FP 26: Modify Table Data FS(US7.4)= 3CFP 

US7.5 : Delete a table FP 27: Delete a Table FS(US7.5)= 3CFP 

US8: View the list of 
orders FP 28: View the List of Orders 

FS(US8)= 4CFP 

US9: Delete an order FP 29: Delete an Order FS(US9)= 3CFP 

  size (US1, US2, US3, US4, US5, US6, US7, US8, and US9) = 119 CFP 

 

 

 



37 
RestoSys Case Study, v1.2 Copyright © 2019 

B. Using Action-Type 

Table 4 presents the mapping of action-type in use case description with COSMIC data 

movements. Note that each use case can be associated with more than one functional 

process. As an example, the “Login” use case is represented by “FP1: Login”. Whereas, the 

use case “Add an order” is associated with FP2 and FP3.   

 

Table 5 Equivalence between action-type in use case description and COSMIC concepts 
in terms of Data movements 

Actions-types in 
Use case 

description 

Actions-types 
description 

COSMIC concepts CFP 

Action-type = 
Expletive 

An action that does not 
lead to an exchange of 
data 

Not applied 0 CFP 

Action-type = 
Request 

An action representing the 
act of asking for 
something, it is directed by 
an actor 

An Entry data movement 
from the Functional user to 
the software to be 
measured 

1 CFP  

Action-type = 
Response 

An answer or a reply sent 
after a Request, it is 
directed by the system 

An eXit data movement 
from the software to be 
measured to the 
Functional user  

1 CFP  

Action-type = 
DataRecovery 

An action that allows the 
retrieving of data 

A Read data movement 
from the persistent storage 
to the software to be 
measured 

1 CFP 

Action-type = 
DataPersist  

An action allowing the 
recording of data 

A Write data movement 
from the software to be 
measured to the persistent 
storage  

1 CFP 

 

 

a. For mobile app 

Table 6 presents the measurement results of the functional size of the mobile app based on 
the Action-Type. 

Table 6 Measurement Results-Using Action-Type (mobile app) 

Functional 
Requirements 

Functional 
Processes 

Sub-Process Description 
Action 
Type 

CFP 

REQ 1: Login 
“Mobile App” 

FP 1: Login 

Enter username and password Request 1 

The mobile app provides waiter 
data to the web app 

Response 
1 

The mobile app receives userstate 
(Connected/Not connected) 

Request 
1 

The mobile app displays the 
userstate (Connected/Not 
connected) 

Response 
1 

The mobile app receives the 
Error/Confirmation message 

Request 
1 



38 
RestoSys Case Study, v1.2 Copyright © 2019 

The mobile app displays 
Error/Confirmation messages from 
the web application 

Response 
1 

FS(FP 1: Login) = 6 CFP 

FP 2: Add 
order’s data 

The waiter enters the table where 
the customer wants to be installed 

Request 1 

The mobile app sends the selected 
table to the web app  
and then the web app creates a 
new order 

Response 1 

The mobile app receives the item 
families list 

Request  1 

The mobile app displays the item 
families list to the waiter 

Response  1 

The waiter enters the item family 
based on the items requested by 
the customer 

Request  1 

The mobile app sends the selected 
item family to the web app  

Response  1 

The mobile app receives the item 
list of the selected family 

Request  1 

The mobile app displays the list of 
items to the waiter 

Response  1 

The waiter enters the items 
required by the customer and 
specifies for each item the 
recommended quantity and the 
customer comments 

Request  1 

The mobile app sends the selected 
items, recommended quantities 
and customer's comments to the 
web app  

Response  1 

The mobile app receives 
Error/Confirmation messages from 
the web app  

Request  1 

The mobile app displays 
Error/Confirmation messages to 
the waiter 

Response  1 

FS(FP 2: Add order’s data) = 12 CFP 

FP 4: 
Modify 
Order’s 
Data 
 

The waiter enters the table where 
the customer is installed 

Request 1 

The mobile app sends the selected 
table to the web app  

Response 1 

The mobile app receives the list of 
items previously selected by the 
customer with their quantities and 
comments to the mobile app 

Request 1 

The mobile app displays the items 
previously selected by the 
customer with their quantities and 
comments to the waiter 

Response 1 



39 
RestoSys Case Study, v1.2 Copyright © 2019 

The waiter deletes the existing 
item, modifies items' quantities 
and/or modifies items' comments 

Request 1 

The mobile app sends the 
modified items to the web app  

Response 1 

The mobile app receives 
Error/Confirmation messages from 
the web app  

Request 1 

The mobile app displays 
Error/Confirmation messages to 
the waiter 

Response 1 

FS(FP 4: Modify order’s data) = 8 CFP 

The total functional size of the mobile app is the sum of the sizes of its three functional 
processes (FP1, FP2, and FP4), that is: 

6 CFP + 12 CFP + 8 CFP = 26 CFP 

 

b. For web app  

Table 7 presents the measurement results of the functional size of the web app based on the 
Action-Type. 

 

Table 7 Measurement Results - Using Action-Type (web app ) 

Functional 
Requirements 

Functional 
Processes 

Sub-Process Description 
Action 
Type 

CFP 

 

FP3: 
Create an 
order  

 

The web app receives the 
selected items, quantities and 
customer comments 

Request 1 

The web app creates the new 
order 

DataPersist  1 

The web app sends 
Error/Confirmation messages to 
the mobile app 

Response 1 

FS(FP3: Create an order) = 3 CFP 

FP 5: 
Retrieve 
selected 

table data  

The web app receives the 
selected table from the mobile 
app 

Request 1 

The web app retrieves the list of 
item families selected by the 
customer 

DataRecovery 1 

The web app sends  the list of 
item families selected by the 
customer to the mobile app 

Response 1 

The web app retrieves the list of 
items selected by the customer 

DataRecovery 1 

The web app sends  the list of 
items selected by the customer 
to the mobile app 

Response 1 

FS(FP 5: Retrieve selected table data) = 5 CFP 

The web app receives the 
modified items 

Request 1 



40 
RestoSys Case Study, v1.2 Copyright © 2019 

FP 6: Save 
modified 
data  

 

The web app updates the order 
data 

DataPersist  1 

the web app displays 
Error/Confirmation messages 

Response 1 

FS(FP 6: Save modified data) = 3 CFP 

REQ 3: Login 
“Web app” 

 

FP7: Login 

Enter username and password Request 1 

The web app checks the  validity 
of admin data  

DataReovery 1 

The web app displays the user 
state (Connected/Not 
connected) 

Response 1 

The web app displays 
Error/Confirmation messages  

Response 1 

FS(FP7: Login) = 4 CFP 

REQ 4: 
Maintain an 
Employee 

FP8: Add 
an 
Employee 

The Admin enters the employee 
data 

Request 1 

The web app retrieves the 
employee’s data to verify if the 
employee exists 

DataRecovery 1 

The web app adds the new 
employee 

DataPersist 1 

The web app displays 
Error/Confirmation message 

Response 1 

FS(FP8: Add an Employee) = 4 CFP 

FP 9: View 
the 
Employees 
list 

The admin selects to view the 
employees list  

Request 1 

The web app retrieves the 
employees list  

DataRecovery 1 

The web app displays the 
employees list   

Response 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP 9: View the Employees list) = 4 CFP 

FP 10: 
View an 
Employee 
Data 

The admin selects the desired 
employee 

Request 1 

The web app retrieves user data 
from the Database  

Data-Recovery 1 

The web app displays the data 
of the selected waiter 

Response 1 

FS(FP 10: View an Employee Data) = 3CFP 

FP 11: 
Modify an 
Employee 
Data 

The admin modifies employee 
data that can be changed 

Request 
1 

The web app saves the change DataPersist 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP 11: Modify an Employee Data) = 3 CFP 

FP 12: 
Delete an 
Employee 
 

The admin enters the employee 
to be deleted 

Request 1 

The web app deletes the 
selected employee 

DataPersist 1 

The web app displays 
Error/Confirmation messages 

Response 1 



41 
RestoSys Case Study, v1.2 Copyright © 2019 

FS(FP 12: Delete an Employee) = 3 CFP 

REQ 5: 
Maintain an 
Item 

FP 13: Add 
an Item 

The admin enters the data of the 
item 

Request 1 

The web app retrieves the items 
data to verify if the admin adds 
an existing item 

Data-Recovery 1 

The web app adds the new item 
DataPersist 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP 13: Add an Item) = 4 CFP 

FP 14: 
View the 
items list 

The web app receives the waiter 
request 

Request 1 

The admin selects to view the 
items list 

Request 1 

The web app retrieves the items 
list  

Data-Recovery 1 

The web app displays the items 
list   

Response 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP14: View the items list) = 5 CFP 

FP 15: 
View an 
Item data 

The admin enters the desired 
item 

Request 1 

The web app retrieves the item 
data from the Database 

Data-Recovery 1 

The web app displays the data 
of the selected item  

Response 1 

FS(FP 15: View an Item data) = 3 CFP 

FP 16: 
Modify an 
item 

The admin modifies the desired 
fields (name, price, quantity, 
image, etc.) and asks the web 
app to update the data of the item 

Request 1 

The web app saves the change DataPersist 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP16: Modify an item) = 3 CFP 

FP 17: 
Delete an 
Item 

The admin selects the item to be 
deleted 

Request 1 

The web app deletes the 
selected item 

DataPersist 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP 17: Delete an Item) = 3 CFP 

REQ 6: 
Maintain Item 
family 

FP 18: Add 
an item 
family 

The admin enters the data of the 
item family  

Request 1 

The web app retrieves the item 
families’ data to verify if the 
admin adds an existing item 
family 

Data-Recovery 1 



42 
RestoSys Case Study, v1.2 Copyright © 2019 

The web app adds the new item 
family 

DataPersist 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP18: Add an item family) = 4 CFP 

FP19: View 
Item 
families list 
 

The web app receives the waiter 
requests 

Request 1 

   

The admin selects to view the 
item families list 

Request 1 

The web app retrieves the item 
families list  

DataRecovery 1 

The web app displays the item 
families list   

Response 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP19: View Item families list) = 5 CFP 

FP20: View 
Item family 
data 

The admin enters the desired 
Item Family 

Request 1 

The web app retrieves the Item 
Family data from the Database 

DataRecovery 1 

The web app displays the data of 
the selected Item Family to the 
admin 

Response 1 

FS(FP20: View Item family data) = 3 CFP 

FP21: 
Modify an 
item family 

The admin enters modified fields 
(name, image, color)  

Request 1 

The web app saves the change DataPersist 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP21: Modify an item family) = 3 CFP 

FP22: 
Delete an 
item family 

The admin enters the family 
items to be deleted 

Request 1 

The web app deletes the 
selected family item 

DataPersist 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP22: Delete an item family) = 3 CFP 

REQ 7: 
Maintain 
Table 

FP23: Add 
a table 

The admin enters the table data Request 1 

The system checks if the table 
already exists  

DataRecovery 1 

The web app adds the new table  DataPersist 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP23: Add a table) = 4 CFP 

FP24: View 
Tables list 

The mobile app selects to view 
the tables list 

Request 1 

The admin selects to view the 
tables list 

Request 1 

The web app retrieves the 
Tables list  

DataRecovery 1 



43 
RestoSys Case Study, v1.2 Copyright © 2019 

The system displays the Tables 
list   

Response 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP24: View Tables list) = 5 CFP 

FP25: View 
a table 

data 

The admin enters the desired 
table 

Request  1 

The web app retrieves the Table 
data from the database 

DataRecovery 1 

The web app displays the data 
of the selected table to the 
admin 

Response 1 

FS(FP25: View a table data) = 3 CFP 

FP26: 
Modify 
table data 

The admin enters  modified 
table data 

Request 1 

The web app saves the change DataPersist 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP26: Modify table data) = 3 CFP 

FP27: 
Delete a 
table 

The admin enters the table to be 
deleted 

Request 1 

The web app deletes the 
selected table 

DataPersist 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP27: Delete a table) = 3 CFP 

 

FP28: View 
the List of 
Orders 

The admin selects to view the 
orders list 

Request 1 

REQ 8: View 
the List of 
Orders 

The web app retrieves the 
orders data 

DataRecovery 1 

The web app displays the orders 
list 

Response 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP28: View the List of Orders) = 4 CFP 

 

FP29: 
Delete an 
order 

The admin selects the order to 
be deleted 

Request 1 

REQ 9: Delete 
an order 

The web app deletes the 
selected order 

DataPersist 1 

The web app displays 
Error/Confirmation messages 

Response 1 

FS(FP29: Delete an order) = 3 CFP 

 

The total functional size of the web app is the sum of the sizes of its 26 functional processes, 
that is: 

3 CFP + 5 CFP + 3 CFP + 4 CFP + 4 CFP + 4 CFP + 3 CFP + 3 CFP + 3 CFP + 4 CFP + 5 
CFP + 3 CFP + 3 CFP + 3 CFP + 4 CFP + 5 CFP + 3 CFP + 3 CFP + 3 CFP + 4 CFP + 5 CFP 
+ 3 CFP + 3 CFP + 3 CFP + 4 CFP + 3 CFP = 93 CFP 

The total size of RestoSys is then equal to the sum of functional sizes of mobile and web apps 
(26 CFP + 93 CFP) = 119 CFP, which is the same functional size as measured by referring to 
the documented REQ in natural language. 



44 
RestoSys Case Study, v1.2 Copyright © 2019 

REFERENCE 

COSMIC (2017) The Common Software Measurement International Consortium. 2017. The 
COSMIC Functional Size Measurement Method, Version 4.0.2, Measurement Manual 

COSMIC (2015a) Guideline on Non-Functional & Project Requirements : How to consider non-
functional and project requirements in software project performance measurement, 
benchmarking and estimating.  

COSMIC (2015b) Guideline for Early or Rapid COSMIC Functional Size Measurement by 
using approximation approaches.  

(Haoues et al., 2017a) M. Haoues, A. Sellami, and H. Ben-Abdallah, “Functional change 
impactanalysis in use cases: An approach based on COSMIC functional 
sizemeasurement,” Science of Computer Programming, Special Issue onAdvances in 
Software Measurement., 2017 

(Haoues et al., 2017b) M. Haoues, A. Sellami, and H. Ben-Abdallah. 2017. A Rapid 
Measurement Procedure for Sizing Web and Mobile Applications basedon COSMIC FSM 
Method. In Proceedings of 27th International Workshopon Software Measurement and 
12th International Conference on SoftwareProcess and Product Measurement, 
Gothenburg, Sweden, October 25–27, 2017(IWSM/Mensura ’17), 9 pages. 

Mhadhbi S (2013) Conception et Développement d’un Système de Gestion Restaurant Mobile.  

  



45 
RestoSys Case Study, v1.2 Copyright © 2019 

APPENDIX A - STRUCTURED USE CASE DOCUMENTATION FORMAT USING 

ACTION-TYPE 

Many individual proposals of textual descriptions are available to assist in documenting a Use 

Case (UC). We proposed an extension of the UC textual description with the “Type” of an 

action which can be: “Request”, “DataPersist”, “DataRecovery”, “Expletive”, or “Response” 

(Haoues et al., 2017a). A “Request” corresponds to an action representing the act of asking 

for something, it is directed by an actor. A “Response” corresponds to an answer or a reply 

sent after a Request, it is directed by the system. A “DataPersist” action corresponds to an 

action allowing the recording of data. An “Expletive” action is used to get an action started but 

does not lead to an exchange of data, such as an action allowing data manipulation. 

“DataRecovery” action allows the retrieving of data.  

The following documentation of a use case is provided in (Haoues et al., 2017a). 

Number:<unique ID assigned to a use case> 

Name:<unique name assigned to a use case> 

Level:<level of use case description> 

Description:<a summary of use case purpose> 

Actors:<Primary actor: actor that initiates the use case> 

<Secondary actor: actor that participate within the use case> 
 

Pre-condition:<a list of conditions that must be true to initialize the use case> 

Post-condition (success):<state of the system if goal is achieved> 

Post-condition (failure):<state of the system if goal is abandoned> 

Relationship 

[Include:<use cases in relation with this use case by "include">, Extend:<use cases in 

relation with this use case by "extend">, Super use case:<list of subordinate use cases 

of this use case>, Sub use case: <list of all use cases that specialize this use case>] 

Begin 

MS /* Main scenario */ 

<Steps of the scenario from trigger to goal> 

Begin 

<NumAction> [<Pre-condition>] <Actor|System><Type: Request, DataPersist, Expletive, 

Response, DataRecovery><Action Description> [<Int-Parameter>] [<Out-Parameter>] 

End 

AS /* Alternative scenario */  

Begin<Event, begin at Num "action number"> 

<NumAction> [<Pre-condition>] <Actor|System><Type: Request, DataPersist, Expletive, 

Response, DataRecovery><Action Description> [<Int-Parameter>] [<Out-Parameter>] 

The main scenario back to NUM  

End 

ES /* Error scenario */  

Begin<Event, begin at Num "action number"> 

<NumAction> [<Pre-condition>] <Actor|System><Type: Request, DataPersist, Expletive, 

Response, DataRecovery><Action Description> [<Int-Parameter>] [<Out-Parameter>] 

End 

End Use Case 

Special requirements:<list of non-functional requirements> 

 


	Table of Contents
	1 RESTAURANT MANAGEMENT SYSTEM REQUIREMENTS
	1. 1 Context
	1. 2 Hardware Components
	1. 3 Software-Hardware Interactions
	1. 4 Software Requirements
	A. Requirements
	B. User Stories Description
	C. Use Cases Description
	D. NFR - Non-Functional Requirements
	E. PRC - Project Requirements and Constraints


	2 THE MEASUREMENT STRATEGY PHASE
	2. 1 Measurement Purpose
	2. 2 Measurement Scope
	2. 3 Identification of Functional Users
	2. 4 Other Measurement Strategy Parameters
	A. Level of Granularity
	B. Decomposition


	3 THE MAPPING PHASE
	3. 1 Identification of the Functional Processes and the Software Triggering Events
	3. 2 Identification of Objects of Interest, Data Groups, and Data Attributes

	4 THE MEASUREMENT PHASE
	4. 1 Functional Size Measured from REQ - Natural Language
	A.  For Mobile App
	B. For Web app
	C. For the Whole System

	4. 2 Functional Size Measured from REQ – US and UML UC Textual Description
	A. Using User Stories Description
	B. Using Action-Type


	REFERENCE
	APPENDIX A - Structured Use Case Documentation Format Using Action-Type

