

Early Software Sizing

with COSMIC:

Experts Guide

2nd Edition

February 27, 2020

(minor editing May 2020)

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 2
Copyright © 2020

 Acknowledgements

Acknowledgements: Editor & reviewers 2020 (alphabetical order).

Alain Abran
École de Technologie
Supérieure
Canada

Jean-Marc Desharnais
École de Technologie
Supérieure
Canada

Arlan Lesterhuis
COSMIC
the Netherlands

Bruce Reynolds
Tecolote Research
United States

Asma Sellami
University of Sfax
Tunisia

Hassan Soubra
German University of Cairo
Egypt

Sylvie Trudel
Université du Québec à
Montréal
Canada

Francisco Valdés Souto
Spingere
Mexico

Frank Vogelezang *
METRI
The Netherlands

* Editor

History of the versions of this document.

DATE REVIEWER(S) Modifications / Additions

July 2015 COSMIC Measurement
Practices Committee

First public version of this document.

August 2018 Subject Matter Experts Alignment to version 4.0.2 and issued for review by authors of
relevant work.

February 2020 Subject Matter Experts Revised version based on the 2019-2020 review comments.

May 2020 Subject Matter Experts Minor editing- No version change for the document.

COSMIC documentation, including translations into other languages, is available at
www.cosmic-sizing.org.

You can use the forum on cosmic-sizing.org/forums to post your questions and receive
answers from the COSMIC world-wide community. The quality of any answers will depend on
the knowledge and experience of the community member that writes the answer.

Commercial organizations exist that can provide training and consultancy or tool support - see
www.cosmic-sizing.org for further details.

DOI 10.13140/RG.2.1.4195.0567

Copyright 2020. All Rights Reserved. The Common Software Measurement International Consortium (COSMIC).
Permission to copy all or part of this material is granted provided that the copies are not made or distributed for
commercial advantage and that the title of the publication, its version number, and its date are cited and notice is
given that copying is by permission of the Common Software Measurement International Consortium (COSMIC).
To copy otherwise requires specific permission.

http://www.cosmic-sizing.org/
http://cosmic-sizing.org/forums/
http://www.cosmic-sizing.org/

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 3
Copyright © 2020

 Foreword

The COSMIC method provides a standardized way of measuring a functional size of software.
In practice, it is sometimes sufficient or necessary to only approximate a functional size:

• early in the life of a project, before the Functional User Requirements (FUR) have been
specified down to the level of detail where the precise size measurement is possible;

• when there is insufficient time or resources to measure using the standard method and a
quick approximate size will be acceptable;

• when the quality of the documentation of the actual requirements is not good enough for
precise measurement.

Purpose of this Guide

The purpose of this Guide is to describe the current state of the art regarding early or rapid
COSMIC functional size measurement using approximation techniques. This document
describes several approximation techniques with their pros and cons, their recommended area
of application and their validity.

The reader is assumed to be familiar with the standard COSMIC method. For those who need
to use approximation techniques in practice, see the: Early Software Sizing with COSMIC:
Practitioners Guide.

Chapter 1 describes reasons why it may be necessary to approximate functional sizes; how
actual requirements are often expressed at varying levels of detail (known as ‘levels of
documentation’) and some general principles on how to recognise and apply ways of sizing
approximately such actual requirements.

The rest of the guide is divided into four parts:

• Part I Techniques for the Requirements Stage (chapters 2-6)

• Part II Techniques for the Feasibility Stage (chapters 7-10)

• Part III Techniques in the Research Stage (chapter 11)

• Part IV General Concepts

Readers of this Guide who are new to approximate sizing are strongly advised to first read
Chapter 1 on the General Principles of approximate sizing and Part IV with the General
Concepts.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 4
Copyright © 2020

Table of Contents

FOREWORD

1. GENERAL PRINCIPLES OF APPROXIMATE SIZING. ..6

1.0 Note on Terminology. .. 6

1.1 When is approximate COSMIC sizing needed? .. 6

1.2 Techniques to approximate functional size ... 7
1.2.1 General Principles ... 7
1.2.2 Measurement scaling. ... 8
1.2.3 Localization (calibration). .. 8
1.2.4 Approximate sizing by classification and scaling. ... 8
1.2.5 Accuracy of approximate sizing. ... 9

1.3 Levels of Documentation of Actual Requirements. ... 9

1.4 Quality of Actual Requirements. .. 9

1.5 Applicability of approximation techniques described in this Guide. .. 10

2. AVERAGE SIZE OF FUNCTIONAL PROCESSES. ... 12

3. FIXED SIZE CLASSIFICATION. ... 14

4. EQUAL SIZE BANDS. .. 16

5. AVERAGE OF USE CASES. .. 20

6. FUNCTIONAL SIZE MEASUREMENT PATTERNS. ... 22

7. SOFTWARE ICEBERG ANALOGY. .. 28

8. EARLY & QUICK COSMIC APPROXIMATION. .. 31

9. APPROXIMATION USING FUZZY LOGIC – THE EPCU MODEL. ... 34

10. EASY FUNCTION POINT APPROXIMATION.. 38

11. EMERGING APPROXIMATION TECHNIQUES. .. 41

11.1 Approximation from informally written textual requirements. .. 41

11.2 Approximation based on the average number of data groups. ... 41

11.3 Approximation based on Use Case names. .. 41

11.4 Approximation based on actions in UML Use Case diagrams. ... 42

11.5 Approximation based on Equal Number Bands. ... 43

11.6 Approximation based on Equal Range Bands. ... 43

12. DIFFERENT LEVELS OF DOCUMENTATION AND DECOMPOSITION 45

12.1 The evolution of requirements in the early stage of a large software project 45

Case #1 Measuring at varying levels of documentation - the ‘Everest’ system 48

Case #2 Measuring at varying levels of documentation & decomposition in a software architecture
 49

12.2 Functional size measurements and standard levels of decomposition. 53

13. LOCALIZATION (CALIBRATION) GUIDELINES. ... 55

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 5
Copyright © 2020

14. APPROXIMATE SIZING OF CHANGES OF FUNCTIONALITY AND SCOPE CREEP. 57

14.1 Approximate sizing of changes to functionality. .. 57

14.2 Approximate sizing and scope creep. ... 57

15. CONCLUSIONS ON TECHNIQUES TO APPROXIMATE SIZING. ... 59

REFERENCES. ... 60

GLOSSARY OF TERMS ... 63

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 6
Copyright © 2020

1
1. GENERAL PRINCIPLES OF APPROXIMATE SIZING.

1.0 Note on Terminology.

The COSMIC method measures the ‘Functional User Requirements’ (or FUR) of software.
COSMIC uses this term to apply to requirements that are specified in sufficient detail for an
approximate COSMIC Functional Size Measurement.

Approximate sizing techniques are designed to be applied when this level of detail is not (yet)
available. In this Guide, we therefore refer to the ‘actual requirements’ as the subject that
approximate sizing techniques are designed to measure. The term ‘actual requirements’ may
include ‘system’ non-functional requirements. But many actual requirements that appear
initially as ‘system’ non-functional evolve, as a project progresses, into ‘software’ functional
requirements that can be sized by the same approximation techniques.

For the definition of general COSMIC terms used in this Guide, see the Measurement Manual
[2]. For terms specific to this Guide, see the Glossary.

1.1 When is approximate COSMIC sizing needed?

Early in the software development lifecycle, requirements do not describe the full scope of
functionality of the software. Over time, requirements will be detailed, and at times changed,
as the software development lifecycle progresses. Early in the lifecycle an assessment of the
functional size is needed to support cost or effort estimation.

Whatever the strength of a size approximation technique, there is really no way we can expect
that technique to compensate for a lack of understanding of the software job to be done. Until
a software specification is fully defined, it actually represents a range of solutions, and a
corresponding range of software functional size. This uncertainty diminishes over time when
the requirements are more fully understood and by applying proper risk management. It can
be graphically represented as a Cone of Uncertainty.

The original conceptual basis of the
Cone of Uncertainty was developed
for engineering and construction in
the chemical industry by the
American Association of Cost
Engineers in 1958 [4]. In the software
field, the concept was picked up by
Barry Boehm in 1981 [5]. Although
the effect is usually presented on a
logarithmic scale to yield a
symmetrical cone, we prefer to show
it on a linear scale to demonstrate
that the uncertainty towards more
functionality is far larger than the
uncertainty towards less functionality.

The use of agile methods of developing software disrupts the smooth curves shown in Figure
1.1 since single projects are replaced by sprints. For each sprint parts of this curve apply. A

Figure 1.1 Cone of Uncertainty

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 7
Copyright © 2020

common approach in agile software development is to start with the development of an
architecture for the new software. Once this is agreed, some priority parts of the architecture
may be immediately specified in much greater detail, as sprints comprising a backlog of User
Stories are defined. Approximate sizing techniques described in this Guide may be used at the
architecture level (see more in Chapter 10) and certainly at the level of outlined User Stories.
For more on using COSMIC sizing in Agile environments see [6].

There are three main circumstances in which an approximate1 COSMIC functional size may
be valuable:

• when a size measurement is needed rapidly and an approximate size is acceptable if it can
be done much faster than with the standard method. This is known as ‘rapid sizing’;

• early in the life of a project before the actual requirements have been specified in some
detail but insufficient for an accurate size measurement. This is known as ‘early sizing’;

• in general, when the quality of the documentation of the actual requirements is not good
enough for an accurate size measurement.

Rapid sizing can be valuable when a very large piece of software or, say, a whole software
portfolio needs to be sized but it would take too much time and money to measure accurately,
and approximate sizes are acceptable.

Well before the FUR have been worked out in the detail needed for an accurate measurement,
a project effort estimate is required. In such cases the actual requirements would typically exist
at various levels of detail in artefacts that are not standardized in any way. For example, some
actual requirements may exist at the Use Case level whilst others have been worked out in
more detail. Furthermore, Use Cases themselves may express requirements at different levels
of detail.

Whether measuring accurately or approximately, measurers should always try to get as much
information and details on the description of the actual requirements. Assumptions can then
be used to make the functional size measurement as accurately as possible.

1.2 Techniques to approximate functional size

1.2.1 General Principles

Steve McConnell described three levels of determining software size [7]:

• Count: If detailed information is available, the most accurate way of determining the size is
to count. Adapting this to the COSMIC method means applying the standard method at the
functional process level of documentation and counting the data movements, i.e. following
the standard measurement process.

Even at this level, requirements are very rarely sufficiently detailed that an accurate
measurement is possible, so the measurer will need to make certain assumptions.

• Compute: If not enough information is available at the desired level of detail, count
something that is available and then compute the answer by using calibration data.
Adapting this to the COSMIC method means applying an approximation technique to a
higher level of documentation and scaling this measurement to the functional process level
of documentation.

• Judge: Experts can give an approximation of the size, based on a mental model
established on experience. This expert judgment is the least accurate means of
approximation. The accuracy can be strengthened if the expert judgment can be tied to

1 Instead of describing this subject as approaches to ‘approximate sizing’, it might be more accurate to describe it
as techniques to ‘estimating sizes’. However, the word ‘estimating’ is strongly associated with methods of
estimating project costs, effort or duration, etc. To avoid confusion, we therefore prefer to write about ‘approximate
sizing’.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 8
Copyright © 2020

concrete size information. Adapting this to the COSMIC method means classifying some
available ‘objects’ (e.g. high-level statements of actual requirements or a list of Use Cases)
and assigning a size based on the classification and knowledge of scaling factors
established at the ‘Compute’ level.

1.2.2 Measurement scaling.

Scaling: Count each actual requirement and multiply the count or measurement by a number,
the ‘scaling factor’, to determine its COSMIC functional size. A scaling factor is determined by
a calibration process in which, from a representative number of actual requirements, the
standard COSMIC functional size has been established.

The general principle of any scaling technique is to find some way of measuring the
approximate size of locally-defined artifacts of actual requirements at a high level of
documentation and then to measure the same requirements in units of CFP when they are
known at the functional process level of documentation. A ‘scaling factor’ is a ratio that is used
to convert measurements on locally-defined high-level artifacts to sizes expressed in CFP -
see Table 1.1.

Level of documentation of the
Actual Requirements

Sizing Measurement
result

Actual requirements at a high level of documentation
derived from e.g.:

• high-level statement of actual requirements for the
software

• architecture artifacts

• high-level view of existing software

expressed in locally-defined (countable) units e.g. Use
Cases

An ‘Approximate
technique’ to the

COSMIC
measurement

method.

 Calibrated locally

The size of the
locally defined

unit, expressed in
local units or in

CFP

The functional process level of documentation COSMIC
measurement

method

Size in CFP

Table 1.1 – Scaling of sizes between different levels of documentation.

Scaling factors should be established locally. For more guidance, see chapter 13.

1.2.3 Localization (calibration).

Approximate sizing techniques are based on artifacts that are not standardized and may vary
in their levels of functional details within organizations and across organizations. This implies
that the scaling factors need to be calibrated locally. In this document, ‘locally’ implies that the
environment in which the scaling factors for the approximation technique have been defined is
representative of the environment the approximation technique is to be used in.

Guidance on localization is given in chapter 13.

1.2.4 Approximate sizing by classification and scaling.

Classification: classify each actual requirement and assign a size to it (i.e. apply a scaling
factor) that represents the COSMIC functional size for that requirement.

The general approach of classification is that each part of the actual requirements to be sized
approximately is allocated to a pre-defined class (or reference piece) of requirements whose
size has been calibrated in CFP, i.e. each class has its own scaling factor. A size is thus
assigned to each part of the actual requirements, based on its classification.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 9
Copyright © 2020

It is highly desirable that an approximation technique that uses classification provides objective
rules or criteria, or typical examples to assist the correct classification.

Chapter 3 describes a ‘Fixed Size’ classification technique and in Chapter 4, the classes are
‘Equal Size Bands’. The techniques described in Chapters 7, 8, 9 and 10 use various
techniques to requirements classification.

1.2.5 Accuracy of approximate sizing.

Any technique to approximate sizing is the result of a trade-off between ease and speed of
measurement versus loss of accuracy. Therefore, the accuracy of each technique should be
established and reported. See Chapter 13 for guidance on establishing the accuracy.

1.3 Levels of Documentation of Actual Requirements.

In the circumstances in which only an approximate COSMIC functional size may be possible,
measurers should be aware of the level of documentation of the software artifacts that are
used to approximate the functional size.

A problem for all approximation techniques is that there is no way of unambiguously defining
standard levels of documentation higher than the functional process level. A set of higher levels
of documentation might be named as, for example, the ‘Use Case level’, the ‘Component’ level,
the ‘Sub-system’ level. But these levels can only be properly defined locally, usually with the
aid of examples.

Furthermore, research has shown that measurers, especially if inexperienced, often do not
realize that actual requirements are expressed at different levels of documentation and/or fail
to distinguish the levels. This is one of the commonest problems faced when intending to
measure functional sizes, whether accurately or approximately.

Chapter 12 is devoted to the aspects that must be considered when measurements are made
at different levels of documentation of actual requirements. Measurers are encouraged to take
note of the aspects discussed in that chapter, before applying any of the techniques described
in this Guide.

1.4 Quality of Actual Requirements.

Classifying the quality of the various parts of actual requirements by using the scheme of the
‘Guideline for assuring the accuracy of measurements’ [33] can help determine the accuracy
of an approximate size measurement. This quality classification scheme defines five levels for
the quality of actual requirements of the functionality, to which we have added a sixth level for
this Guide: Not mentioned (An 'unknown unknown').

Table 1.2 shows the six levels and their definitions and which approximation techniques can
be applied.

Functional
Process Quality

Level

Quality of the functional process
definition

Approximate sizing techniques
that can be used

Completely defined Functional process and its data
movements are completely defined

Use standard COSMIC FSM
method

Documented Functional process is documented but
not in sufficient detail to identify the data
movements

See Chapters 2 – 7

Identified Functional process is listed but no
details are given of its data movements

See Chapters 2, 5 - 9

Counted A count of the functional processes is
given, but there are no more detailsFout!

Bladwijzer niet gedefinieerd.

See Chapters 2, 5, - 9

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 10
Copyright © 2020

Implied (A ‘known
unknown’)

The functional process is implied in the
actual requirements but is not explicitly
mentioned

See Chapters 2 – 9

Not mentioned (An
‘unknown unknown’)

Existence of the functional processes is
completely unknown at present

Add a contingency for ‘scope
creep’ on the basis of past
experience (see 14.2)

Table 1.2 – Functional Process Quality levels related to the approximation techniques.

Given this guidance, we strongly recommend that measurers do not use any of the
approximation techniques described in this Guide as simple ‘recipe books’. Always:

1. examine the actual requirements to be measured closely so that you understand the level(s)
of documentation, the completeness and quality of the actual requirements before starting
to use an approximation technique;

2. try to obtain more detail than is given in the actual requirements from an expert in the
software so that you can at least list and name the functional processes;

3. verify an approximation technique (by comparing accurate and approximate sizing) using
local requirements and measurements to ensure it produces reasonably accurate sizes in
your local environment and, if necessary, calibrate the technique locally before using it for
your own real measurements. See Chapter 13 for more on localization.

1.5 Applicability of approximation techniques described in this Guide.

Most of the practical experience described in this Guide has been obtained from applying the
approximation techniques described in Chapters 2, 3 and 4 to measuring the size of the actual
requirements for new business application software.

For real-time embedded software: an example in Chapter 4 describes the result of applying an
approximation technique successfully to some very complex real-time embedded avionics
software. A case in section 12.1 describes the approximate sizing of the functionality of a
complex telecoms software architecture at various levels of documentation.

The approximation techniques described here are applicable to the actual requirements:

• for new software and for enhancements to existing software that require whole new
additions of functionality

• for software from any domain, e.g. business, real-time embedded or infrastructure.

We are not aware of any reported experience of applying these approximation techniques to
size the actual requirements for enhancements that involve many changes (adds, modifies and
deletes) to existing software. However, these techniques may be applied to size such
enhancements, provided great care is taken for the calibration process. See Chapter 123for
more.

For practical use we have divided the approximation techniques into three parts:

Part I Techniques that can be used in the requirements stage, when the requirements no
longer contain any ‘unknown unknowns’.

Part II Techniques that can be used in the feasibility stage, when the completeness of the
requirements is an aspect that should be taken into account.

Part III Techniques that are still in the research phase. These techniques have no publicly
reported practical track record as far as we are aware at the time of writing.

In Part IV a number of general aspects worked out in more detail for reference.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 11
Copyright © 2020

Part I
Techniques for the Requirements Stage.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 12
Copyright © 2020

2
2. AVERAGE SIZE OF FUNCTIONAL PROCESSES.

Origin and approximation mechanism.

The average functional process approximation was first introduced in version 2.2 of the
COSMIC method [9]. This is the simplest process for obtaining an approximate size of a piece
of software. It may be used when the actual requirements of a piece of software are known
only to the level of functional processes but not to the level of data movements.

A Determine the scaling factor.

1. Identify a sample of actual requirements whose functional processes and data movements
have been defined in detail, with characteristics similar to the actual requirements of the
software to be measured.

2. Identify the functional processes of these sample requirements.

3. Measure the sizes of the functional processes of these sample requirements accurately
using the standard COSMIC method.

4. Determine the average size, in CFP, of the functional processes of these sampled
requirements (e.g. average size = 8 CFP). ‘8’ is then the scaling factor for this technique.

5. Identify the standard deviation.

B Approximation using the scaling factor.

1. Identify and count all the functional processes of the actual requirements of the software
to be measured (e.g. = 40 functional processes).

2. For a set of requirements: The approximate functional size of the set of actual requirements
of the software to be sized is approximated to be (number of functional processes x scaling
factor) = 40 x 8 CFP = 320 CFP [1].

3. For a specific requirement: determine the approximate size range by using the average
size +/- 1 standard deviation.

From above, if the average is 8 CFP, and the standard deviation is 2 CFP:

• the range of a specific functional process is: [6 to10 CFP];

• the range for the set of 40 functional processes is: [240 to 400 CFP]

Applicability and reported use.

In organizations that have established a COSMIC measurement practice this technique is used
to produce a first ball-park approximation of the size.

In 2005 Vogelezang reported [10] that in different industry sectors different sizes were
measured for an average functional process, i.e. for the scaling factor. This supports our
recommendation that the use of this approximation technique should always be calibrated
locally.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 13
Copyright © 2020

Strengths and weaknesses.

Strength: Easy to use.

Weaknesses:

• The average functional process size is (assumed to be) domain dependent.

• It requires sampling and calculation of an average functional process, based on
detailed measurements from within the same localization (see chapter 13). This data
may not (yet) be available.

Recommended area of application.

This approximation is valid as long as there is sufficient reason to assume that the sample
used to calculate the size of the average functional process is representative for the software
of which the functional size is approximated. See also chapter 13.

To this end, it is good practice to remove from the dataset the applications that are considered
dissimilar from the one being estimated [13]. Also note that this technique works best with a
symmetrical dataset and a standard deviation (σ-value) that is significantly smaller than the
average functional process size.

Research developments.

In 2009 Van Heeringen et al., carried out measurements to compare the accuracy of the
average functional process approximation with measurements using the standard COSMIC
method. In [11] they compared approximations of 24 pieces of software from different
organizations against the accurate measurements.

In 2013 De Marco et al., reported good results with this technique to estimate the development
effort for web application development [12].

In 2014 Del Bianco et al., did an experimental evaluation of this technique and did not find a
good predictive power of this approximation [13]. The predictive power could be improved by
calculating the ordinary least square formula of the sample and using that for estimation. They
also proposed a similar method, based on the number of involved data groups, rather than the
amount of data movements. See section 10.2 for details on that method.

In 2019 Lavazza and Morasca concluded that this technique generally provides
approximations that are reasonable for early and quick sizing, but in some cases its estimation
errors are too large to be acceptable [14].

Practical use in enhancement projects.

Often projects must not only create new functional processes, but must also modify existing
functional processes. In practice the following technique has been observed:

1. While measuring projects, each functional process is marked as either 'New' or 'Modified'.

2. The average size for a new & a modified functional process were established separately.
The average values obtained varied depending on the domain. Typically, the average size
of a modified functional process was about half the average size of a new one.

When approximating the size of a project at an early stage, the new and modified functional
processes must be identified, counted and multiplied by their respective average sizes.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 14
Copyright © 2020

3
3. FIXED SIZE CLASSIFICATION.

Origin and approximation mechanism.

The fixed size classification approximation was first introduced in the ‘Advanced and Related
Topics’ document in version 3.0 of the COSMIC method [15].

The technique depends on defining a typical size classification of the functional processes in
the piece of software to be measured. A corresponding size, or scaling factor, is then assigned
to each class, for all of its functional processes.

A statement of actual requirements must be analysed to identify the functional processes and
to classify each of them according to their size in one of three or more size classes called, for
instance, Small, Medium and Large. Table 3.1 shows an example of a set of size classes that
is in actual use in a specific business organization. The rows show the three possible size
classes for this organization and the total number of CFP that must be assigned to a functional
process in each group (for instance, if one small functional process is identified, it is assigned
a scaling factor of 5, so that its size is 5 CFP). To force the measurer to make a deliberate
choice of size, the step size between the classes is taken to be fairly wide, at 5 CFP.

The four columns #E, #X, #R and #W explain why the functional process of a given size is
assigned the number of CFP. For instance, a Small functional process is assumed to consist
of 1 Entry, 1 Read, 1 Write and 1 Exit data movements. For a Medium or Large functional
processes more data movements of each type are assumed. The fifth column ‘Error messages’
adds in one Exit for error/confirmation messages.

Classification Size (CFP) #E #X #R #W Error messages

Small 5 1 1 1 1 1

Medium 10 2 2 3 2 1

Large 15 3 3 4 4 1

…

Table 3.1 – Fixed size classification from [8].

If the functional size of some actual requirements must be approximated early in the
development process, each actual requirement is assigned one or more functional processes,
together with their appropriate size classification and corresponding size approximation. Use
of a table such as 3.1 helps the measurer to make a quicker decision on the assignment of the
size class for each functional process. If necessary, the table may be extended to
accommodate one or more additional sizes, such as ‘very large’ of 20 CFP. When well
calibrated, this technique should give a more accurate functional size than the average size
technique of Chapter 2.

Applicability and reported use.

This technique has been used extensively by a large business organization in the Netherlands.
The technique was successful within that organization. There is no public information on the
use and accuracy of this approximation other than in this organization.

Strengths and weaknesses.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 15
Copyright © 2020

Strengths:

• Easy to use.

• Can be implemented in a simple way.

• The scale factors are documented, i.e. verifiable.

• As the approximate sizes are based on an expected number of objects of interest to be
accessed (hence the data movements), knowledge of this factor helps the measurer to
decide which classification to assign to a functional process.

Weaknesses:

• The definition of the size classification is (assumed to be) domain dependent.

• Assigning functional processes to a size class is a subjective element of this
approximation technique, which reduces the strength of the approximation. See also
Chapter 1.

Recommended area of application.

This approximation is valid as long as there is sufficient reason to assume that the assigned
size classification is representative for the software of which the approximate functional size is
to be measured. See also chapter 13. It is highly desirable that objective local rules are
determined to assist measurers in assigning the correct classification.

Research developments.

In 2000 Santillo investigated the classification of Functional Processes in order of increasing
magnitude, as Functional Process, General Process, or Macro Process. In this technique also
a subdivision in Small, Medium and Large was used, but on unknown intervals, instead of
known intervals as in this technique. This has led to the Early & Quick technique see - chapter
8 [31].

In 2019 Lavazza and Morasca tested two alternatives for the Fixed Size Classification
technique [14]: the Equal Number Bands technique (see section 11.5) and the Equal Range
Bands technique (see section 11.6).

In the Equal Number Bands technique the functional processes from a reference set are
ordered and divided into a number of bands with an equal number of functional processes.
The average functional size of the functional processes that are assigned to that band is used
as the estimation value for that band (see section 11.5 for details).

In the Equal Range Band technique the range between the smallest and the largest functional
process in the reference set is divided into a number of ranges that are defined so that all
ranges have equal width. The average functional size of the upper and lower functional size of
each band is used as the estimation value for that band (see section 11.6 for details).

Lavazza and Morasca determine that these techniques could lead to a better prediction of the
actual size than the Fixed Size Classification technique. In general, they concluded, bands-
based methods provide much more accurate estimates than the Average Functional Process
technique, when sufficiently skilled classifiers are employed, and the proper number of bands
is used.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 16
Copyright © 2020

4
4. EQUAL SIZE BANDS.

Origin and approximation mechanism.

The equal size bands approximation was first introduced in version 2.2 of the COSMIC method
[9].

In the ‘Equal Size Bands’ technique, the functional processes are classified into a small number
of size bands. The boundaries of the bands are chosen in the calibration process so that the
total size of all the functional processes in each band is the same for each band.

A Determine the scaling factors.

1. Identify a sample of actual requirements whose functional processes and data movements
have been defined in detail, with characteristics similar to the actual requirements of the
software to be measured.

2. Identify the functional processes of these sample requirements.

3. Measure the sizes of the functional processes of these sample requirements accurately
using the standard COSMIC method.

4. Sort the functional processes in ascending order and present them graphically in ascending
order together with their cumulative size.

5. Using the information from the cumulative distribution, split the sample into a number of
bands that all have the same total size (and thus contain a different number of functional
processes). So if, for example, the choice is to have three bands, then the total size of all
the functional processes in each band will contribute 33% to the total size of the software
being measured.

6. Determine the average size, in CFP, of the functional processes in each band. These are
the scaling factors for each band. These scaling factors are usually not integer numbers.

B Approximation using the scaling factors.

1. Identify for each of the functional processes to be approximated the size band in which it
belongs.

2. Assign the scaling factor for that size band to the functional process.

3. Sum all the approximated functional processes to get the functional size approximation of
the whole piece of software.

Applicability and reported use.

Vogelezang and Prins reported on a calibration using measurements on 37 business
application developments, each of total size greater than 100 CFP [16]. They used four size
bands to make a distinction between relatively small processes, medium-sized processes,
large and very large ones. The average sizes of each band of the 2,427 functional processes
of the 37 applications were distributed over the four bands were:

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 17
Copyright © 2020

Band Average size of a
Functional Process

% of total
Functional Size

% of total number
of Functional Processes

Small 4.8 25% 40%

Medium 7.7 25% 26%

Large 10.7 25% 19%

Very Large 16.4 25% 15%
Table 4.1 – Equal size bands from 37 business applications [16].

This same approach was used to calibrate one component of a major real-time avionics system
(of total size 10,875 CFP), with the following results:

Band Average size of a
Functional Process

% of total
Functional Size

% of total number
of Functional Processes

Small 5.5 25% 49%

Medium 10.8 25% 26%

Large 18.1 25% 16%

Very Large 38.8 25% 7%
Table 4.2 – Equal size bands from a major component of an avionics system.

Note the similarity between the numbers of functional processes in each of the four bands
despite the totally different types of software. However, the average size of the functional
processes in each band is quite different, especially for the large and very large bands. This
emphasizes the need for local size calibration.

To size a new piece of software the functional processes of the new piece are identified, they
are classified as ‘Small’, ‘Medium’, ‘Large’ or ‘Very Large’. In the next step, the average sizes
of each band (such as listed above but preferably calibrated locally) are then used to multiply
the number of functional processes of the new piece of software, in each band respectively to
get the total estimated approximate size.

The advantage of this technique is that at the end of a new approximated sizing for some new
software, the measurer can check if the contribution to the total size of the functional processes
of the new software in each size band is close to the 25% assumed by this ‘Equal Size Band’
technique. If so, the calibration will have been suitable for this new measurement. If not, the
measurer should consider whether the calibration has been accurate enough.

The accuracy of any calibration of classification sizes for this technique is important for
accurate sizing since functional processes typically exhibit a skewed size distribution, as
illustrated by both sets of data given above. In other words, software systems typically have
many functional processes of small size and few of larger sizes. More attention must therefore
be paid to accurate sizing of the few ‘large’ and the even fewer ‘very large’ functional processes
to get an accurate total size.

Strengths and weaknesses.

Strengths:

• Easy to use.

• The technique has been shown to be applicable for software in both the business
application and real-time embedded domains.

• The use of more bands potentially leads to a more accurate approximation.

Weaknesses:

• Choose the number of bands carefully that the bands are significantly far enough apart
to be different bands of functional processes.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 18
Copyright © 2020

• More bands lead to a higher probability that a given functional process is classified
incorrectly. Therefore, only as many bands should be used that can be correctly
identified by a measurer.

• A considerable number of accurately measured functional processes must be available
before the bands can be safely determined.

• When carrying out an approximate size measurement, assigning functional processes
to a size class is a subjective element.

• When there are a few functional processes in the Very Large band, the average size
of this band must be used with great care, because the actual functional size of an
approximated functional process can differ significantly from the scaling factor for this
band.

Recommended area of application.

This technique is recommended for approximate sizing of software that has a significantly
skewed distribution of the size of functional processes.

This approximation is valid as long as there is sufficient reason to assume that the assigned
size classification is representative for the software of which the approximate functional size is
to be measured. See also chapter 13.

It is highly desirable that objective local rules are determined to assist measurers in assigning
the correct classification.

The conclusion we can draw from these results is that the greater the skew, the greater the
advantage of this technique for accuracy over the techniques in chapters 2 and 3.

Research developments.

In 2009 Van Heeringen et al., compared approximations of 24 pieces of software from different
organizations with the accurate measurements [11]. The results were that on average the
difference between the approximated size and the size that was determined with the standard
FSM procedure was only 1.26%. This means that for 90% of all results in the study, the Equal
Size Bands technique gave a result within -15% to +25% of the corresponding result found
with the standard COSMIC method.

In 2012 the results of the study done by Vogelezang and Prins in 2005 [16] were tested using
a fuzzy logic model to approximate the functional size of the C-registration system Case Study
by Valdes Souto and Abran [20]. This test showed that the equal size bands approximation
was a better approximation technique than the EPCU fuzzy logic model used in the experiment
when the FP are known and fully documented as in the C-registration Case Study. See section
8.2 for a description of the EPCU model.

In 2013, in his PhD thesis on the development of a scaling factors framework to improve the
approximation of software functional size, Almakadmeh asserted that a solid approximation
framework could be designed by combining the equal size bands approximation with the
quality rating mechanism from the COSMIC Guideline for Assuring the Accuracy of
Measurement [8].

In 2016, the problem with the distribution of functional processes' sizes in the historical dataset
and in the new application to be sized was analyzed by Luigi Lavazza and Sandro Morasca.
They demonstrated that if the distribution of functional processes' sizes is approximately the
same in the historical dataset used to calibrate the model and in the new application to be
sized then the accuracy of the Equal Size Bands method is similar to the Average Functional
Process technique. This result shows that there is a risk that after applying the Equal Size

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 19
Copyright © 2020

Bands technique (which involves the cost of classifying each functional process of the new
application) one may discover that the classification work was useless, since the Average
Functional Process method would have given the same result faster and with less effort. On
the contrary, when the distributions are different, the Equal Size Bands technique provides
definitely more accurate estimates.

In 2019 Lavazza and Morasca published an empirical evaluation of early and quick size
estimating techniques [14]. In general, they concluded, bands-based methods provide much
more accurate estimates than the Average Functional Process technique, when sufficiently
skilled classifiers are employed, and the proper number of bands is used.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 20
Copyright © 2020

5
5. AVERAGE OF USE CASES.

Origin and approximation mechanism.

The average Use Case approximation was first introduced in the ‘Advanced and Related
Topics' document in version 3.0 of the COSMIC method [15].

The principle of the approximation is similar to the average functional process approximation
from chapter 2, but on a higher level of documentation, namely the Use Case.

Local calibration might determine that a (locally-defined) Use Case comprises, on average, 3.5
functional processes, each of average size 8 CFP (as in the example in Chapter 2). Hence
the average size of a Use Case according to this local definition, is 3.5 x 8 = 28 CFP per Use
Case.

For a new project with 12 Use Cases, the software size would be 12 x 28 = 236 CFP.

Thus, with this calibration, identifying the number of Use Cases early in a development
project’s life will provide a basis for making a preliminary estimate of software size in units of
CFP. The uncertainty on this approximate size will be greater than that with the techniques
discussed in e.g. Chapter 2. This is because the scale factor 28 is the product of two other
scale factors (8 and 3.5) which are themselves estimated. (The result might therefore be better
expressed as, for example, 240 plus or minus x%, where the ‘x%’ has been obtained by
appropriate analysis).

Applicability and reported use.

In literature there is no reported use of this approximation technique.

Strengths and weaknesses.

Strengths:

• Easy to use if there is a local standard on what is a Use Case, more specifically
describing the expected level of documentation of a Use Case.

Weaknesses:

• The problem with this technique is that the concept of Use Case is interpreted in
different ways by different organizations and people, so that the amount of functionality
that is associated to a Use Case can vary widely [13]. There is evidence that the
technique would not work unless the organization producing Use Cases adopts some
sort of standard to ensure consistency in their size.

• The scaling factor is the product of two other scaling factors which are themselves
estimated. This increases the uncertainty of the approximation result.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 21
Copyright © 2020

• Sufficient historical data are required for localization of the size of an average Use
Case. Since Use Cases are not standardized, it is of vital importance to verify the
homogeneity of the historical data as well.

Recommended area of application.

This approximation is valid as long as there is sufficient reason to assume that the assigned
size classification of an average Use Case is representative for the software of which the
functional size is approximated.

Also note that this technique works best with a symmetrical dataset and a standard deviation
(σ-value) that is significantly smaller than the average use case size.

Research developments.

In 2013 a study by Gencel and Symons [23] of practices in a very large software house showed
that different parts of the software house had quite different ideas on what a Use Case is. In
one part of the software house there was a fairly consistent ratio of functional processes per
Use Case. In another part, this ratio varied widely. This finding should be taken into account in
the local calibration when this approximation technique is used.

In 2018 Ecar et al., proposed the COSMIC User Story Standard to help overcome the issue of
differing ideas on what a User Story is. They introduced and tested a User Story template that
facilitates measurement of the User Stories and describing them on a similar level of
abstraction [24].

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 22
Copyright © 2020

6
6. FUNCTIONAL SIZE MEASUREMENT PATTERNS.

Origin and approximation mechanism.

Functional Size Measurement (FSM) patterns [25] were proposed in 2016 as a means to help
inexperienced measurers learn faster how to apply the COSMIC method by establishing the
relationship between the method rules and the measurement results.

COSMIC experts have observed that some patterns of measurement results recur repeatedly.
A formal definition presented in [25] is:

DEFINITION – FSM Pattern

A predefined generic software model solving a recurring measurement problem in a specific
context.

PRINCIPLE – FSM Pattern

Functional User Requirements in a given software domain often follow patterns. Hence their
related measure of functional size also follows a pattern.

Four types of patterns have been defined: “Micro FSM pattern”, “Basic FSM pattern”,
“Composite FSM pattern”, and “Multi-composite FSM pattern” respectively. See figure 6.1.

Figure 6.1 – The four types of measurement patterns.

Micro FSM patterns: a fragment of a functional process, involving one or several data groups.
Example: displaying an error message.

Note that fragments have no independent occurrence in COSMIC detailed measurements,
except during measuring changes.

Basic FSM patterns: a complete single COSMIC functional process.

Composite FSM pattern: a set of basic FSM patterns having a high level functional meaning
together. A composite FSM pattern combines several functional processes. The CRUDL

Micro

Pattern

e.g. error

message

Basic

Pattern

one whole

functional

process

Composite

Pattern

e.g. a

CRUD set

of

functional

processes

for one

OOI

Multi-

composite

Pattern

e.g. a sub-

system

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 23
Copyright © 2020

(Create, Retrieve, Update, Delete, List) set of functional processes to maintain data describing
one or more related objects of interest is an example of a composite FSM pattern.

Multi-composite FSM pattern: a set of composite and basic patterns having functional
relationships among them. A multi-composite FSM pattern combines multiple functional
processes handling data describing several objects of interest within the software being
measured. In business application software, a multi-composite FSM pattern could represent
a whole module, or component of a distributed application or even a whole application. In real-
time embedded systems, it could be the set of back-end subsystem functionalities for a family
of devices.

Applicability and reported use.

Each pattern type is described with three characteristics:

• Problem: Describe succinctly the problem the pattern is about to solve;

• Context: Describe the circumstance when that problem occurs;

• Solution: Describe how to solve the problem in this specific context.

It is also necessary to add a pattern name.

A) Example with Micro FSM patterns:

Pattern Name: Display simple error messages.

Problem: How to approximate (or measure) a FUR that displays one or several occurrences
of error messages?

Context: For one or several validations within a functional process that outputs to a human
functional user.

Solution: For Display simple error messages.

Functional Process Data Group Data Movements Functional Size (in
CFP)

<Functional process> Error message X 1

 Total: 1

a. Legend: E=Entry; X=eXit; R=Read; W=Write;

B) Example with Basic FSM Pattern:

Pattern Name: Basic Create Functional Process.

Problem: How to measure a FUR to handle the response to a single event that involves the
persistence of a data group with a simple data existence validation?

Context: It is common in Information Systems that data needs to be saved for later use. The
FUR may generically state that “the [functional user] enters data about the <object of interest>
(1 Entry) and saves the occurrence; the [software] ensures that this occurrence does not
already exist (1 Read) and makes the occurrence persistent (1 Write); If the occurrence can’t
be persisted or there are other validation failures, an error message is displayed (1 eXit)”.

Solution: For Basic Create

Functional Process Object of Interest Data Movements Functional Size (in CFP) Remark

Create <object of interest> <object of interest> ERW 3 Creates a new occurrence

Error message X 1

Total: 4

a. Legend: E=Entry; X=eXit; R=Read; W=Write;

b. The “E” in bold represents the triggering Entry of its functional process.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 24
Copyright © 2020

C) Example with FSM Pattern:

Pattern Name: Composite CRUDL-3OOI

Problem: How to measure a group of FUR (e.g. CRUDL) related to a given Object of Interest
having the same functional processes as another similar set of FUR, but handling also two
other Objects of Interest?

Context: It is common in Information Systems that FUR are repeated many times with
variations of Objects of Interest while the expected software behaviour is the same. The FUR,
at a higher level of decomposition than preceding examples, may generically state that “the
[systems] is required to Create, Retrieve, Update, Delete, and List occurrences of <First OOI>.
A <First OOI> must be linked with an existing <Second OOI> [for attribute X] and to an existing
<Third OOI> [for attribute Y], chosen from a list on screen.

Solution:

Functional Process Object of Interest Data
Movements

Functional
Size (in CFP)

Remark

Create <First OOI> <First OOI> ERW 3 Create new occurrence

<Second OOI> RX 2 Read and display list

<Third OOI> RX 2 Read and display list

Error message X 1 Subtotal: 8 CFP

Retrieve <First OOI> <First OOI> ERX 3 Select, read and display existing
occurrence

<Second OOI> RX 2 Must read its ID to display its

name

<Third OOI> RX 2 Same as above

Error message X 1 Subtotal: 8 CFP

Update <First OOI> <First OOI> ERW 3 Update existing occurrence

<Second OOI> RX 2 Read and display list

<Third OOI> RX 2 Read and display list

Error message X 1 Subtotal: 8 CFP

Delete a <First OOI> <First OOI> ERW 3 Delete an occurrence, Read it
first, no other OOI required

Message X 1 Subtotal: 4 CFP

List <First OOI> <First OOI> RX 2 Read and display list

Filter E 1 Search filter applicable to all
OOIs

<Second OOI> RX 2 Read/display list (filter)

<Third OOI> RX 2 Same as above

Error message X 1 Subtotal: 8 CFP

Total: 36 For this FSM pattern

c. Legend: E=Entry; X=eXit; R=Read; W=Write; The “E” in bold represents the triggering Entry of its functional
process.

The equivalent of a CRUDL pattern in real-time embedded software is to establish a pattern
for the set of changes in the state of the external functional users/objects of interest of the
software; each such change results in an event that triggers a distinct functional process in the
software.

D) Example with Multi-Composite FSM Pattern.

Pattern Name: Multi-composite module-3OOI.

Problem: How to measure a whole module related to two primary Objects of Interest having
the same functional processes as another similar module, but handling also one secondary
master Object of Interest, three reference Objects of Interest, and four transactional Objects
of Interest?

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 25
Copyright © 2020

Context: It is common in Information Systems that popular modules are repeated many times
with variations of Objects of Interest while the expected software behaviour is basically the
same. The FUR, at a module level of decomposition, may generically state that “the [systems]
is required to “Manage” occurrences of <OOI1> and <OOI2> (“Manage” being equivalent to
CRUDL in this case), and also “Manage” 2nd, 3rd, and 4th reference Objects of Interest, and so
on until all expected functionalities for that module have been described.

Solution2:

FSM Pattern Category Functional Size (in
CFP)

Example

CRUDL-3OOI Composite 36 Manage “Customer”

CRUDL-1OOI Composite 20 Manage “Sales Representative”

CRUDL-1OOI Composite 20 Manage “Customer category”

CRUD-2OOI Composite 22 Manage “Account aging parameters”

CRUD-3OOI Composite 26 Manage “Invoicing parameters”

CRUD-3OOI Composite 26 Manage “Cash receipt (C/R) parameters”

Transaction-7OOI Basic 12 Enter manual invoices

Transaction-6OOI Basic 10 Enter a manual cash receipt

Transaction-8OOI Basic 14 Enter adjustment on Invoice or C/R

Report-3OOI Basic 7 Report on customer sales

Report-4OOI Basic 9 Customer aging report

Report-5OOI Basic 11 Customer statement of account

Milestone-2OOI Basic 10 End of month A/R processing

Total: 223 For this FSM pattern

Strengths and weaknesses.

Strengths:

• Contributes to reduce measurement effort.

• Could be applied by relatively inexperienced users of the COSMIC method.

• Provides a more accurate size measurement by helping to avoid common
measurement mistakes.

• This set of patterns, for any ‘CRUDL’ member is more detailed by giving the sizes of
‘simple’, ‘average’ and ‘complex’ functional processes Further, ‘Reports’ have been
added to the CRUDL set. An early version of such a set of patterns is given in [27]. This
experience suggests that the early estimation needs within any one organization can
be largely satisfied by developing standard patterns only at the Basic and Composite
Levels. If there is a need to estimate for a Multi-Composite set of FUR, a size can be
built up from the lower levels by local knowledge and expert judgement.

• Using well-defined patterns adapted to an organization’s local software requirements
should enable improved repeatability of early size estimation.

Weaknesses:

• FSM patterns and their usage have not yet been quantitatively evaluated against the
solution objectives for COSMIC FSM. More case studies and research are needed.

• FSM Patterns need to be described very well in order to be used by inexperienced
measurers.

2 Please note that is only a summary view for such module type. The full description is available in [25].

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 26
Copyright © 2020

Recommend area of application.

This technique is suited for the following types of software: business and real time software
within well-defined domains.

Research Developments.

In 2017 experiments with this technique have started at the Polish Agency for Restructuring
and Modernisation of Agriculture.

Research and development is continuing on COSMIC support tools and pattern definitions in
various contexts. The FSM Patterns need to be described very well in order to be used by
inexperienced measurers.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 27
Copyright © 2020

Part II
Techniques for the Feasibility Stage.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 28
Copyright © 2020

7
7. SOFTWARE ICEBERG ANALOGY.

Origins and approximation mechanism.

This approximation technique described in Abran and Vedadi [42] is based on:

A. The iceberg analogy
B. ISO-IEEE standard 29148 on Requirements Engineering.

In the iceberg-software analogy illustrated in Figure 7.1, the left above-water line visible part
of the iceberg corresponds to the very early-on description of the software requirements, which
requirements are progressively described with more details, up to the final fully described
details of these software requirements (the progressive visibility of the under-waterline of the
iceberg).

Fig. 7.1 Software-Iceberg analogy: from initially visible functions (left) to full view (right).

In physics there is a well-known ratio for the mass above to the mass under water for a floating
iceberg – of course such a ratio was calculated based on a number of empirical measurements
and scientific observations, and it is a constant.

In software development there is no known constant ratio, but using empirical observations
and measurements from COSMIC case studies, some approximation procedures can be
worked out to come up with ratios for local contexts.

Across all software projects, functional visibility will vary across the development lifecycle, and
hence software functional documentation across lifecycle phases will vary.

The ISO-IEEE standard 29148 on requirements engineering presents a number of concepts
related to the sources, types and levels of detail of the requirements throughout the system
and software life cycle.

The initial set of requirements originates from two sets of sources, the business stakeholders
and other stakeholders, which leads to the ‘systems’ requirements. From the system functional
requirements, some will be allocated to software requirements (as well as to hardware
requirements and at times to manual operational procedures). These sources provide the
system contextual requirements, including the system purpose, system scope and system
overview. From this contextual information, the following are then identified:

• system functional requirements (some of which will be allocated to software),

• system non-functional quality (some of which will be allocated to software).

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 29
Copyright © 2020

ISO-IEEE 29148 also notes that in addition to software functions explicitly identified, there may
be interfaces identified, but not yet specified, as well as quality requirements, still at a high
level.

Applicability and reported use.

In Abran and Vedadi [42] these concepts were applied to two COSMIC case studies:

1. Course Registration System CRS
2. RestoSys

Within these COSMIC case studies:

A) Three levels of documentation were identified:

• Level 1: (Business) functions (list of ‘system’ functions).

• Level 2: (Business) functions allocated to software functional processes (list of ‘software
functions’).

• Level 3: Detailed functionality allocated to each software functional process (functional
details allocated to software).

B) Functional classifications.

Each of the functional details within each functional process of the case study was
classified into the following five categories (with corresponding level of documentation
within the case studies):

a. Functionality from business requirements– allocated to software functions - level 2,
b. Functionality with more details from business requirements - level 3,
c. Operational functionality for implementing in practice the business requirements

functionality - level 3,
d. Functionality derived from system requirements & allocated to software - level 3,
e. Functionality related to an interface to other software applications - level 1 or 2.

Figure 7.2 presents the distribution of COSMIC-sized functionality in the CRS case study.

Fig. 7.2 CRS case study - Scaling factors based of the size of functional processes [42].

The iceberg-like ratios can then be used as scaling factors at various phases of the lifecycle
and levels of documentation.

For instance, if COSMIC measurement is done very early on in the life cycle where only
systems functions are identified and measurable with COSMIC, the 20% ratio of functionality
can be used as a scaling factor in the following way:

If the systems functions to be allocated to software are measured for a size of 30 CFP at that
point in time and with the functional documentation available at that specific point it time, then

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 30
Copyright © 2020

it could correspond to only 20% of the expected final functional size: this then mean that this
description of functionality is at a 1:5 scale:

• e.g. where 1CFP measured at the beginning of the life cycle could represent 5 CFP at
the end of the life cycle.

Therefore a 30CFP at a scale of 1:5 would then be reasonably be expected to grow to 150
CFP once the software fully developed.

Recommended area of application.

In the very earliest stages of new software development, such as at the system level in ISO-
IEEEE 29148 before a project is formally defined, the requirements will probably be known
only in the broadest outline. At this stage it may be possible to determine an approximate size
using the iceberg analogy with the known sizes of other existing software (such as the CRS or
RestoSys case studies), but it will be too early to apply any of the approximate sizing
techniques described in this Guide.

In [42] the presented scaling factors are specific to the case studies used, but the iceberg
approximation technique can be used in most organizations, provided that data can collected
on past projects and identify classifications of functionalities and levels of documentation that
are relevant to the context for approximation.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 31
Copyright © 2020

8
8. EARLY & QUICK COSMIC APPROXIMATION.

Origin and approximation mechanism.

The Early & Quick COSMIC approximation technique is an adaptation of the Early & Quick
Function Points technique [28]. Later, the Early & Quick technique has extended its
applicability domain to the COSMIC measurement method [31].This was established by taking
advantage of enhancement opportunities derived from local or global measurement data sets,
like the ISBSG benchmarking data base and others [10][16].

The Early & Quick COSMIC approximation technique combines scaling and classification
techniques [30]. It permits the use of different levels of documentation for different branches
of the system on different levels of decomposition. The overall size approximation (which is a
3-point estimate of a minimum, most likely, and maximum size) is the sum of the individual
components’ size approximations.

The Early & Quick COSMIC approximation technique is based on the capability of the
measurer to classify a part of the actual requirements as belonging to a particular functional
category. An appropriate reference table then allows the measurer to assign a CFP average
value for that item (this is applied for software in each identified layer of the software
architecture separately, as per the standard COSMIC method). Each function can be
categorized, in order of increasing magnitude and decreasing number of composing elements,
as a Functional Process, Typical Process, General Process, or Macro-Process.

a) In the Early & Quick technique a Functional Process3 (FP) is the smallest process. A

Functional Process can be Small, Medium, Large or Extra Large, depending on its
estimated number of data movements. This categorization is similar to the ‘Fixed Size
Classification approximation' technique discussed in chapter 3.

b) A Typical Process (TP) is a set of the four basic user operations: Create, Retrieve, Update
and Delete (CRUD) on data describing a particular object of interest. These Typical
Processes are frequently found in business application software.

c) A General Process (GP) is a set of medium Functional Processes and may be thought as
an operational sub-system of the application. A GP can be Small, Medium or Large, based
on the estimated number of Functional Processes that it contains

d) A Macro-Process (MP) is a set of medium General Processes and may be thought as a
relevant sub-system of the overall Information System of the user’s organisation. A MP can
be Small, Medium or Large, based on the estimated number of General Processes that it
contains.

Each level is built up on the basis of the lower one. An appropriate reference table then allows
the measurer to assign a CFP average value for that item.

3 The definition of a functional process in the E&Q approach differs from the COSMIC method standard definition.

In a future version the COSMIC standard definition will be adopted. The functionality identified by the two
definitions is intended to be exactly the same.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 32
Copyright © 2020

In order to make an estimate the measurer (after having gone through the preliminary steps of
the standard method - defining boundaries of applications, layers and scope of measurement)4
has to classify each part of the actual requirements as belonging to one level of the proposed
categories. An assignment table will give the related size measure of that requirement. In this
way not only leaves of the functionality tree may be directly quantified but also intermediate
branches.

Applicability and reported use.

The Early & Quick COSMIC approximation technique is based on the capability of the
measurer to classify a part of the actual requirements as belonging to a particular functional
category. Each part of the actual requirements is to be classified, in order of increasing
magnitude and number of composing elements at one of four levels, as a Functional Process,
Typical Process, General Process, or Macro-Process. The reference table 8.1 then allows the
measurer to assign a CFP value for that part of the actual requirements (this is applied for
each identified level separately).

The most recently published values are depicted in table 8.1 [31].

Type Level Ranges / COSMIC Equivalent min
CFP

most
likely

max
CFP

Functional Process Small 1 - 5 Data movements 2.0 3.9 5.0

Medium 5 - 8 Data movements 5.0 6.9 8.0

Large 8 - 14 Data movements 8.0 10.5 14.0

Very large 14+ Data movements 14.0 23.7 30.0

Typical process
Small

CRUD (Small/Medium processes)
CRUD + List (Small processes)

15.6 20.4 27.6

Medium
CRUD (Medium/Large processes)
CRUD + List (Medium processes)
CRUD + List + Report (Small processes)

27.6 32.3 42.0

Large
CRUD (Large processes)
CRUD + List (Medium/Large processes)
CRUD + List + Report (Medium processes)

42.0 48.5 63.0

General process Small 6 -10 Generic FP's 20.0 60.0 110.0

 Medium 10 - 15 Generic FP's 40.0 95.0 160.0

 Large 15 - 20 Generic FP's 60.0 130.0 220.0

Macro process Small 2 - 4 Generic GP's 120.0 285.0 520.0

 Medium 4 - 6 Generic GP's 240.0 475.0 780.0

 Large 6 - 10 Generic GP's 360.0 760.0 1,300

Table 8.1 – Estimation values for the functional categories of the Early & Quick technique.

Assigning each part of the actual requirements to a specific category higher than the Functional
Process level is quite subjective. The detailed description of the technique gives guidance on
assigning the proper category [30]. The accuracy of the technique is thus strongly dependent
on the training and capability of the measurers who use it to understand the categories at the
higher levels of documentation.

Strengths and weaknesses.

Strengths:

• Applicable when a significant part of the actual requirements is not yet known to a level
of detail to allow functional processes to be identified.

• It can handle different levels of documentation and decomposition within the actual
requirements.

Weaknesses:

• Assigning functional processes to a size class is a subjective element.

4 N.B. This approach’s use of ‘preliminary steps’ corresponds to the COSMIC method’s ‘Measurement Strategy’
phase, but does not appear to be as rigorous as the process defined by COSMIC.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 33
Copyright © 2020

• The uncertainty of the method is only dependent by the ability of the estimator in
identifying the correct entry in the table for the requirements statement which is not
influenced by calibration. The definitions of a General Process (‘an operational sub-
system of the application’) and of a Macro Process (‘a relevant sub-system of the
overall Information System of the user’s organization’) can lead to different
interpretations by different measurers.

• Not designed for approximating enhancements.

Recommended area of application.

This technique is most suited when (a part of) the actual requirements is not detailed enough
to identify functional processes. This technique should be used with caution and only after
proper training in the correct use of the technique.

Research developments.

The proprietor periodically researches the technique in order to calibrate the weights of the
categories' elements and for reporting the results of application.

An experiment reported by Almakadmeh [8] to evaluate the reproducibility and accuracy of this
technique, concluded poor reproducibility when the same approximate measurement was
carried out by different measurers within the experimental context reported.

Other experimental results have been reported in other contexts [32]. This technique may be
used at very different levels of decomposition and documentation with greater uncertainty at
low decomposition and documentation and very small uncertainty at high decomposition and
documentation.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 34
Copyright © 2020

9
9. APPROXIMATION USING FUZZY LOGIC – THE EPCU MODEL.

Origin and approximation mechanism.

In 2012, Valdés et al. proposed a solution using a fuzzy logic model, referred to as the
Estimation of Projects in a Context of Uncertainty – the EPCU model, to create an approximate
sizing technique without the need to use local historical data [20].

The EPCU model takes into account:

• the experience-based linguistic variables used by estimation experts in the domain of
estimation (approximation in this case) and

• the way experts combine these linguistic variables to approximate the functional size.

In practical experiments, Valdés reported that the EPCU estimation process for most of the
projects was significantly better than the use of “expert judgment” estimation technique [34].
In addition, the EPCU model enables a systematic replication: whatever the skill-level of the
people that assign values for the input variables, the EPCU model generates estimates with
less dispersion than the “expert judgment” technique that is especially useful when there is
inherent subjectivity in assigning a size class.

Applying the EPCU model has six steps:

1. Identification of the input variables
2. Specification of the output variable, i.e. the estimated functional size
3. Generation of the inference rules
4. Fuzzification
5. Inference rule evaluation
6. Defuzzification

The first three steps are related to the configuration of the estimation process and generate
the “EPCU context”. An EPCU context is "a set of variables (inputs and output) and the
relations that affect a specific project or a set of similar projects" [20].

This technique was developed for the early phases of a software development project, where
most of the actual requirements are written in natural language, and more often the estimates
are developed in an environment of uncertainty, because the current requirements are not fully
known.

Two input variables were considered in the EPCU context for approximate sizing:

1. Variable 1: the functional process size, and

2. Variable 2: the number of objects of interest about which data is moved by the
functional processes.

In 2014, and 2015 the solution was tested with a case study for an industry project where the
actual requirements were made available for the measurer only as a list of use cases, in which
is typical for the early phases of the software life cycle, i.e. the actual requirements were not
detailed, for case study with a real industrial project, the EPCU size approximation technique

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 35
Copyright © 2020

yielded better results than the equal size bands technique, while both techniques led to lower
sizes. [21]

Research on the EPCU size approximation technique has focused on two documentation
levels of the FUR description: Functional Process, and Use Case.

Applicability and reported use.

From the EPCU model definition, in the first steps, a set of variables (inputs and output) and
the relations between them are defined (EPCU context), the EPCU application to the
approximation of functional size, the EPCU context defined uses two input variables that
impact in the functional size of a functional process or use case defined as output variable.

The output variable was defined as a continuous range of possible values with an upper
boundary, or cut-off, at 16.4 CFP for one context based in the equal size bands technique
defined by Vogelezang et al. [16]. In 2015, Valdés et al. [17] proposed another version of their
fuzzy logic size approximation technique, defining an additional context with an upper
boundary or cut-off at 44.

In 2017, Valdés [18] investigated and compared using a non-parametric test, which of the
EPCU contexts appeared to better represent the distribution of the REAL sizes, when the
documentation level was Functional Process. In this study, it was statistically demonstrated
that:

• distribution for approximation values using cut-off, at 16.4 CFP was similar to REAL
value distribution employing the standard COSMIC method with 180 Functional
Process, and

• in [19] distribution for approximation values using upper boundary, at 44 CFP was
similar to REAL value distribution employing the standard COSMIC method using a
large sample of 293 Use Cases from real projects.

Considering the findings in the research, it is possible to define when the documentation level
of the FUR description was Use Cases, the EPCU context with cut-off at 44 CFP is
recommended. On the other hand, when the documentation level of the functional user
requirements description was Functional Process, the EPCU context with upper boundary at
16.44 CFP is recommended.

Since 2015, the EPCU approximation technique has an extensive use in Mexico, is a
fundamental element for the Mexican database that relate functional size with effort and cost.

Strengths and weaknesses.

Strengths:

• Applicable when a significant part of the actual requirements is not yet known to a level
of detail to allow functional processes to be identified.

• It can handle different levels of documentation and decomposition within the actual
requirements.

• Does not need local historical data to provide a size estimate, especially when most
currently available approximation techniques for sizing the functional size of software
requiring a calibration process employing historical data for better results in local
contexts, however, collecting such data may be both expensive and time-consuming
and approximation techniques based on historical data are of little use without such
data.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 36
Copyright © 2020

• Exhibits good behavior, even when individuals are not acquainted with the COSMIC
method.

• It has an intensive use in Mexico.

Weaknesses.

• Applying this technique involves a number of steps that require trained input, which
makes it challenging for use in industrial software engineering projects.

• The easy way to use the EPCU technique, is to use the commercial version, built by
the method proprietor.

Recommended area of application.

This technique is most suited when (a part of) the actual requirements is not detailed enough
to fully describe the functional processes or use cases, when only the identification of functional
process/use cases is made, that means in early phases of software development cycle.

Also this technique could be used when there is no historical database to calibrate specific
approximation technique.

Research developments.

In 2012, Valdes Souto and Abran [20] reported on a case study using a fuzzy logic model to
approximate the functional size of a software, when the FUR’s are known and fully documented
as in the C-registration Case Study. This research shows that the equal size bands
approximation was a better approximation technique than the EPCU fuzzy logic model with the
similar conditions.

In 2014 [21] further research with a case study aiming to simulate a real early approximation
using the EPCU model for an industry project for which only the names of the Use Cases were
made available to participants. This case study confirmed that the EPCU size approximation
technique does not require local calibration and is useful when there are no historical data
available. For a case study with a REAL industrial project, not a reference software, the EPCU
size approximation technique yielded better results than the ESB technique, while both
techniques led to lower sizes.

In 2015, Valdés et al. [17] proposed another version of their fuzzy logic size approximation
technique. It defined a continuous range of possible values for the output variable with an
upper Q4 (4th Quartile) cut-off of 44 CFP for a Functional Process using the dataset of
Vogelezang et al. [16]. For the study of an industry project that considered Use Case
documentation level, the EPCU cut-off at 44 CFP [17] yielded better results on comparison
with the ESB technique and EPCU cut-off at 16.4 CFP [21], that underestimated the functional
size. On the other hand, more realistic results were obtained using the EPCU cut-off at 44
CFP.

Research on the EPCU size approximation technique has focused on two documentation
levels of the FUR description [20]: Functional Process, and Use Case, using two EPCU
context definitions; however, it was not clear when to utilize each EPCU context (EPCU16.4,
EPCU44), in order to analyze which of the two has a better performance for each
documentation level of functional requirements. In 2017, Valdés [18] investigated and
compared using a non-parametric test, which of the EPCU contexts appeared to better
represent the distribution of the REAL sizes, when the documentation level was Functional
Process.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 37
Copyright © 2020

There is no standard definition for Use Case, and it has been observed that frequently that
Use Cases involve more than one Functional Process, sounds logical that the EPCU
approximation technique with a cut-off of 44 CFP might be more useful if functional
requirements are at the documentation level of Use Cases, a situation that is occurs very
frequently in the industry, in 2017, a similar research oriented to investigated and compared
using a non-parametric test, if the EPCU cut-off of 44 CFP betters represent the distribution of
the REAL sizes, when the documentation level was Use Cases [19].

Based on the findings of [18] the valid conclusion is that the EPCU with a cut-off of 16.4 CFP
is useful when the documentation level was Functional Process and the EPCU with a cut-off
of 44 CFP is recommended when the documentation level is at the Use Case level.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 38
Copyright © 2020

10
10. EASY FUNCTION POINT APPROXIMATION.

Origin and approximation mechanism.

The EASY (EArly & SpeedY) approximation technique was first introduced in 2012, based on
a more generic Software Measurement Approximation Rapid Technique (SMART) to size
fuzzy actual requirements [41]. In the ‘SMART’ technique, on any function the measurer is free
to assume one or more value ‘possibilities’ based on an understanding of the actual
requirements describing the functionality.

Example: “This report is ‘most probably’ 5-data-movements (60%), but it ‘might have’ 2
additional data movements (30%), or even 4 additional data movements (to be
confirmed) (10%).” The approximate value for the function is the weighted sum of all
possible values (where the weights are the corresponding probabilities. In the example,
this would mean an approximate size of 5x0.6 + 7x0.3 + 9x0.10 = 6.0 CFP). (All
probabilities of options for one function must sum to 100%.)

Note that the most probable value is not necessarily always the ‘middle’ one. It is up to the
measurer to assign the probabilities on the possible values. This is different from any ‘average’
technique depicted in previous chapters, where average or middle values are taken as being
‘always’ the most likely values.

However, the ‘SMART’ technique might be time-consuming, for the measurer to assign more
than one possible value to each function being sized, and a corresponding probability to each
value per function.

The EASY approximate technique provides most typical probability distributions for the
measurer to pick from, and allows for approximate sizes and accurate sizes to be mixed.
(Accurate sizes, that is sizes measured according to the standard measurement method,
correspond to sizes where a value is assigned with a close-to-100% probability).

Table 10.1 shows typical probability distributions of approximate values for most common
cases in the Business domain (FP stands for ‘Functional Process’) [41].

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 39
Copyright © 2020

Classification
of the FP

Specification level CFP
(min)

CFP CFP
(max)

Approximate
CFP

Probability

Small FP Little unknown 2
(10%)

3
(75%)

5
(15%)

3.2 >80%

Small FP Unknown (No FUR) 2
(15%)

4
(50%)

8
(35%)

5.1 <50%

Medium FP Little unknown 5
(10%)

7
(75%)

10
(15%)

7.25 >80%

Medium FP Unknown (No FUR) 5
(15%)

8
(50%)

12
(35%)

8.95 <50%

Large FP Little unknown 8
(10%)

10
(75%)

12
(15%)

10.1 >80%

Large FP Unknown (No FUR) 8
(15%)

10
(50%)

15
(35%)

11.45 <50%

Complex FP Little unknown 10
(10%)

15
(75%)

20
(15%)

15.25 >80%

Complex FP Unknown (No FUR) 10
(15%)

18
(50%)

30
(35%)

21 <50%

Table 10.1 – Probability distributions of approximate values in the business domain.

Different choices of probability distributions, as well as minimum and maximum CFP values
for the several cases of Functional Process above, lead to different instantiation of the EASY
approximation technique. A similar case can be made for the Real-time domain.

A similar technique, with different sizes and probabilities, can be used for approximating the
sizes of ‘small’ to ‘large’ functional changes (for enhancement projects).

Applicability and reported use.

In the literature there is no reported use of this approximation.

Strengths and weaknesses.

Strengths:

• It can be mixed with standard measures.

• It can be scaled to different levels of documentation.

• It works for enhancement projects (size of changes, instead of sizes of functions).
Weaknesses:

• It might be time-consuming to establish the calibration and apply it to real requirements.

• It relies on the choice of the ‘typical’ cases to map the fuzzy actual requirements onto.

Recommended area of application.

This approximation is valid throughout the evolution of the actual requirements, as their
description evolves in time.

Research developments.

Usage data is being collected for validation and improvement purposes.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 40
Copyright © 2020

Part III
Techniques in the Research Stage

.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 41
Copyright © 2020

11
11. EMERGING APPROXIMATION TECHNIQUES.

The approximation techniques in this chapter are still in an early stage of development. We
believe that these techniques have the potential to evolve into approximation techniques or
tools that can be used in the near future.

11.1 Approximation from informally written textual requirements.

The approximation technique from informally written textual requirements [33] builds on work
on automating COSMIC functional size measurement from formal requirement specifications:

• First a number of informal textual requirements must be selected to describe a single
functional process and then be manually measured.

• The textual requirements and the corresponding sizes are stored per functional process in
a database to act as reference.

• Then the measured functional processes are divided into four fuzzy size classes based on
the quartile boundaries of the total dataset.

• Then with text mining, linguistic features are extracted from the dataset to train a text
classification algorithm that can automatically classify a new set of textual requirements
belonging to one of the four fuzzy size classes.

Strength: after the preparation stage it can be fed with textual requirements that can
automatically provide a size estimate. In the experiment, textual requirements from various
sources were used to test the technique.

A weakness could lie in different linguistic characteristics in different environments, and the
easy replication for distinct languages, meaning that local calibration would be required for
each environment.

11.2 Approximation based on the average number of data groups.

In 2014, Del Bianco et al. reported that in their dataset the average number of data groups per
functional process was a better predictor of functional size than the average number of data
movements [13]. They reported that the number of data movements per data group involved
in a functional process is quasi constant and that within their dataset the following formula gave
a good estimation of COSMIC functional size:

𝐶𝐹𝑃̅̅ ̅̅ ̅̅ = 𝐴𝑣𝐷𝐺𝑝𝑒𝑟𝐹𝑃 ∗ 1.8 ∗ #𝐹𝑃𝑟

The prerequisite for using this approximation technique is that the organization performs full-
fledged COSMIC measurement to be able to collect the necessary historical data needed to
compute these estimation formulas.

11.3 Approximation based on Use Case names.

In 2016, Ochodek proposed an approximation technique on Use Case names in a particular
environment in search for candidate techniques for automated functional size measurement

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 42
Copyright © 2020

[35]. State-of-the-art guidelines for writing Use Cases advise to document them with a name
that accurately expresses the goal of an actor using a simple clause with an implied subject.
These names can be processed and assigned into one of thirteen categories:

• Check Object 4.25 CFP

• Asynchronous Retrieve 5.10 CFP

• Delete 5.87 CFP

• Create 7.01 CFP

• Dynamic Retrieve 7.56 CFP

• Retrieve 7.84 CFP

• Change State 8.23 CFP

• Complex Internal Activity 9.00 CFP

• Delete Link 9.00 CFP

• Transfer 9.19 CFP

• Link 13.70 CFP

• CRUD 17.60 CFP

It is important to mention that these types characterize Use Cases rather than single data
movements. Some of these types are self-explanatory, e.g., Create or Delete. Other ones
make more subtle distinctions between the use-case goals.

For instance, Complex Internal Activity characterizes Use Cases that aim at running
complex algorithms/processing. Usually, the scenarios of such Use Cases look trivial but
when analyzed from the perspectives of the COSMIC method, it quickly becomes
apparent that they involve single or multiple entry data movements (most often
processing parameters and input data) as well as read and write movements.

The detailed description of this and other types of Use Cases can be found in [35].

Based on historical data on these categories a functional size can be determined. The author
did a validation that the proposed categories are both complete and have a sufficient degree
of discriminating efficiency to effectively classify all different Use Cases across different
domains. Although most of the Use Cases were following the guidelines for writing Use Cases,
for some of them anomalies have been found related to their proper naming. It has been
observed that:

• 4% of Use Cases had misleading names that did not correspond to the semantics of
their scenarios.

• Another 2% were so-called CRUD (Create, Retrieve, Update, Delete) or partial-CRUD
Use Cases whose names suggested only one of the CRUD operations.

11.4 Approximation based on actions in UML Use Case diagrams.

In 2017, Haoues et al. proposed an approximation based on actions that can be easily retrieved
from UML Use Case diagrams [36]. Although the measurement formulas are proposed for and
tested with web and mobile applications, the concepts are generic for any type of software
documented with UML Use Case diagrams.

The technique is based on the observation that the functional size of a functional process is
bounded by a minimum and a maximum value, according to the following rule:

2 ≤ FS(FP) ≤ FS(A) + FS(S) + FS(E/C)

where 2 is the minimum size for any given functional process and the maximum can be
determined by the sum of the functional size of actions from the Actor - FS(A), actions of the
System - FS(S) and actions for Error handling and Confirmation messages - FS(E/C).

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 43
Copyright © 2020

In the investigated dataset the measured functional size was always between 77-100% of the
maximum functional size of the software. When calibrated with historical data, this method
offers the potential of automated approximation from UML diagrams.

This technique can also be applied to approximate the size of changes that occur throughout
the software life cycle. Changes in system requirements can be classified as either functional
or technical. Functional changes affect FUR, while technical changes affect NFR or PRC.

Changes are most often expressed in natural language by change requesters (e.g., customers,
users, development teams, etc.). The technique proposed in [36] can be used with Machine
Learning algorithms to approximate the size of a change. The benefits of applying this
technique with Machine Learning will allow decision-makers to monitor rapidly change
requests at different levels of details.

11.5 Approximation based on Equal Number Bands.

In 2019 Lavazza and Morasca tested two alternatives for the Fixed Size Classification
technique [14]. They reported that these techniques could lead to a better prediction of the
actual size than the Fixed Size Classification technique.

The approximation based on Equal Number Bands divides the set of functional processes into
ordered adjacent bands that contain the same number of functional processes, i.e., such that

The band reference size to be used for estimation purposes is set to the average size of the
functional processes belonging to the band.

In practice, however, the actual bands can only approximate the definition, because the
number of functional processes is not always a multiple of the number of bands. Suppose we
have a total of 98 functional processes, which we want to divide into 4 bands: the best we can
do is to have:

• two bands with 25 functional processes and

• two bands with 24 functional processes.

11.6 Approximation based on Equal Range Bands.

In 2019 Lavazza and Morasca tested two alternatives for the Fixed Size Classification
technique [14]. They reported that these techniques could lead to a better prediction of the
actual size than the Fixed Size Classification technique.

The bands are defined so that all ranges have equal width.

So, if we have a dataset where the minimum functional process size is 3 CFP and the
maximum functional process size is 44, and we want to define 4 bands, we shall have

bands with range width
44−3

4
 = 10.25 CFP. Therefore, the borders between the bands are

at 13.25 CFP, 23.5 CFP, and 33.75 CFP.

Since the size of functional processes must be an integer, the Small band includes functional
processes in the [3,13] range; similarly, the other bands include functional processes in the
[14,23], [24,33], and [34,44] CFP range, respectively.

The band reference size to be used for estimation is set to the midpoint of the band bounds.
For instance, a band including functional processes in the [24,33] CFP range is assigned a

reference size of
24+33

2
 = 28.5 CFP.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 44
Copyright © 2020

Part IV
General Concepts.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 45
Copyright © 2020

12
12. DIFFERENT LEVELS OF DOCUMENTATION AND
DECOMPOSITION

This chapter discusses some aspects of functional size measurement that must be considered
to ensure that measurements made on different sets of actual requirements are comparable
with respect to the levels of documentation and decomposition. The ideas described here can
arise when functional size measurements must be made in the early stages of a large software
project and in general when it is necessary to ensure the comparability of size measurements
across the various parts of the actual requirements.

These aspects of measuring functional sizes need to be considered in the Measurement
Strategy phase of the process described in the Measurement Manual. The ideas are not
specific to the COSMIC method, but in principle are relevant to any functional size
measurement method.

12.1 The evolution of requirements in the early stage of a large software project

In the early stage of a large software development project, when the actual requirements are
first being established, one of the two following techniques may be followed.

• First, the actual requirements are being defined in ever-more detail.

• Second, the actual requirements may be split into smaller, well-demarcated, more
manageable, ’chunks’, so that separate teams can work on them in parallel. These
separate ‘chunks’ may later be developed as separate pieces of software, e.g. as
separate ‘sub-systems’.

The result may be (and this has been observed on several occasions in practice) that when a
first measurement of size is required, the actual requirements to be measured exist at various
‘levels of documentation’ (also called ‘level of granularity’ in the Measurement Manual v5.0)
and at various ‘levels of decomposition’. It is easy to confuse these two concepts. Therefore
both concepts are described below.

DEFINITION – Level of decomposition

Any level resulting from dividing a piece of software into components (named ‘Level 1’, for
example), then from dividing components into sub-components (‘Level 2’), then from dividing sub-
components into sub-sub components (‘Level 3’), etc.

NOTE 1: Not to be confused with ‘level of documentation’.

NOTE 2: Size measurements of the components of a piece of software may only be directly
comparable for components at the same level of decomposition.

When faced with actual requirements documents that may or may not be at the same level of
documentation and/or at the same level of decomposition, the measurer must clearly examine
these levels before establishing any scaling factors, as described in chapter 1.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 46
Copyright © 2020

DEFINITION – Level of documentation

Any level of expansion of the description of a single piece of software (e.g. a statement of its
requirements, or a description of the structure of the piece of software) such that at each increased
level of expansion, the description of the functionality of the piece of software is at an increased and
uniform level of detail.

NOTE: Measurers should be aware that when requirements are evolving early in the life of a
software project, at any moment different parts of the required software functionality will typically

have been documented at different levels of documentation.

Accurate COSMIC functional size measurements require that the actual requirements to be
measured exist at a level of documentation at which functional processes and their data
movements can be identified (i.e. the level at which we refer to them as ‘Functional User
Requirements’ (FUR). The ‘functional process level of documentation’ is defined as follows.

DEFINITION - Functional process level of documentation

A level of documentation of the description of a piece of software at which

• the functional users are individual humans or engineered devices or pieces of software (and not
any groups of these) AND

• single events occur that the piece of software must respond to (and not any level at which groups
of events are defined)

NOTE 1: In practice, software documentation containing functional requirements often describes
functionality at varying levels of documentation, especially when the documentation is still evolving.

NOTE 2: ‘Groups of these' (functional users) might be, for example, a ‘department’ whose members
handle many types of functional processes; or a ‘control panel’ that has many types of instruments;
or ‘central systems’.

NOTE 3: ‘Groups of events’ might, for example, be indicated in a statement of FUR at a high level of
documentation by an input stream to an accounting software system labeled ‘sales transactions’; or
by an input stream to an avionics software system labeled ‘pilot commands’

RULES - Functional process level of documentation

a) Accurate functional size measurement of a piece of software requires that its FUR are known at a
level of documentation at which its functional processes and data movement sub-processes may
be identified.

b) If some requirements must be measured before they have been defined in sufficient detail for an
accurate measurement, the requirements can be measured using an approximate technique.
These techniques define how requirements can be measured at higher level(s) of documentation.
Scaling factors are then applied to the measurements at the higher level(s) of documentation to
produce an approximate size at the level of documentation of the functional processes and their
data movement sub processes. See the ‘Guideline for Early or Rapid Functional Size
Measurement’.

This Guide describes several techniques to implement rule b).

As described in section 1.4, a problem for all approximation techniques is that there is no way
of unambiguously defining standard levels of documentation higher than the functional process
level. Furthermore measurers, especially if inexperienced, often do not realize that actual
requirements are expressed at different levels of documentation and/or fail to distinguish the

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 47
Copyright © 2020

levels. This is one of the commonest problems faced when intending to measure functional
sizes, whether accurately or approximately.

To assist measurers in assessing the measurability of requirements COSMIC has compiled a
Guideline for Assuring the Accuracy of Measurements [37]. With this guideline the
requirements can be scored in the following categories:

A. Completely defined
B. Partially Documented
C. Identified
D. Counted
E. Implied (a ‘known unknown’), not mentioned or missing (an ‘unknown unknown’)

The following are examples of statements of requirements at different levels of documentation
and how they should be analyzed before applying an approximate technique to functional size
measurement.

Statement of Requirements The Level of Documentation
and how to analyze the Requirements

Cat.

“The software system shall control
all processes of the washing
machine, including washing cycles,
heating, filling, emptying, user
control panel interface, etc.”

A very high level of documentation. Very difficult for
someone without experience to measure even
approximately without further detail. However, an
experienced measurer with knowledge of the washing
machine’s hardware, should be able to at least list the
number of functional processes and then use an
approximate sizing technique.

E

The “software shall enable
personnel officers to maintain data
about all permanent employees.”

The word ‘maintain’ usually implies at least functional
processes to create, read, update and delete data
(remember the acronym ‘CRUD’). It is reasonable to
measure using an approximation technique, but the
measurer must check if the list of functional processes
is complete. (Several types of enquiry and update
functional processes could be needed.)

C

“I want to be able to enquire on the
order backlog which must be up-to-
date at any time.” (Example of a
possible ‘User Story’ for an Agile
development)

This actual requirement appears to define a single
enquiry functional process. It may even be that
enough is known from the context that the functional
process can be measured accurately. But the actual
requirement is not clear. The Story may imply other
functional processes. The measurer must ask, e.g.

a) what does ‘order backlog’ mean? How detailed is
the enquiry – by order, by customer, by product,
by time since ordered, etc?

b) what functionality is needed to maintain the order
backlog up-to-date at any time?

B

“Access of customers to the system
over the web shall be subject to
industry-standard security, requiring
e-mail address as the ID and a
password.”5

Most measurers should be able to list the functional
processes for this actual requirement, e.g. to allow
new and existing customers to access the system, to
handle forgotten passwords, a facility to change a
password, etc. So it should be possible to measure at
least an approximate functional size.

D

5 This security requirement might be considered as a ‘Non-Functional Requirement’ (NFR). But like many other
NFR’s, the requirement is satisfied by software and this software can be measured by the COSMIC method.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 48
Copyright © 2020

Statement of Requirements The Level of Documentation
and how to analyze the Requirements

Cat.

“Monthly reports shall be produced
for the Sales Managers at Branch,
Region and National levels.”

This actual requirement is unclear. It might specify
three functional processes, but because no detail of
the data movements is given, it also might only
indicate a different sorting. Without further details, the
approximate sizes could have a wide range of
uncertainty.

E

“Every 10 seconds the software
shall read and display the external
temperature and update the
temperature history log.”

A fully specified functional process with its data
movements. Can be measured accurately

A

To illustrate the type of difficulties faced by measurers, we provide two cases.

1. In the first case we briefly re-consider the example of a well-known system for ordering
goods over the Internet, which is referred to as the ‘Everest’ system in the
Measurement Manual where it is discussed in detail. This case illustrates the difficulties
of measuring actual requirements at different levels of documentation.

2. In the second case we consider an example from a telecoms software architecture.
This example illustrates the difficulties of measuring actual requirements that are being
defined to lower and lower levels of documentation and are being decomposed into
smaller ‘chunks’ at the same time, in parallel.

Case #1 Measuring at varying levels of documentation - the ‘Everest’ system

The case of the Everest system is described in version 4.0.2 of the Measurement Manual,
section 2.4.3. The description of the part of the Everest system that is given and analyzed is
highly simplified and “covers only the functionality available to Everest’s customer users. It
thus excludes functionality that must be present so that the system can complete the supply
of goods to a customer, such as functionality available to Everest staff, product suppliers,
advertisers, payment service suppliers, etc.”

If we were to describe the total Everest application at its highest levels of documentation, we
might show it as a set of functional areas, of which ‘customer ordering’ would be only one area.
The other areas might be: internal processes (e.g. accounting); product supply; management;
advertising; payment services; system maintenance; etc. We could ‘decompose’ the total
application at this level, and then consider each functional area independently.

The task for someone who must measure the actual requirements of any one area would
therefore be to understand the actual requirements as they evolve at lower and lower levels of
documentation. The measurement scope would be defined as the ‘customer ordering
functional area’. The measurer would not have to think about ‘decomposition’ within this scope.

Recalling some observations on this case study, as we ‘zoom-in’ to lower levels of
documentation of the actual requirements of the customer ordering functional area:

• the scope of the area to be measured does not change,

• the functional users (individual customers who place orders) do not change. A customer
can ‘see’ the whole functionality of the area at all the levels of documentation of the
analysis.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 49
Copyright © 2020

A further, and most important observation, was that “in practice when some functionality is
analyzed in a top-down approach, it cannot be assumed that the functionality shown at a
particular ‘level’ on a diagram will always correspond to the same ‘level of documentation’ as
this concept is defined in the COSMIC method. (This definition requires that at any one level
of documentation the functionality is ‘at a comparable level of detail’.)”

As the diagrams in the Measurement Manual showing a possible analysis of the Everest
ordering system illustrate, in practice functional processes can occur at various levels in such
diagrams. The measurer must therefore examine each main branch, minor branch, or leaf of
the system ‘tree’ to develop a scaling factor appropriate to that part. As in practice at any given
moment all parts of a functional model will not have evolved to the same level of
documentation, the same one scaling factor cannot be applied to each part.

Case #2 Measuring at varying levels of documentation & decomposition in a software
architecture

The example in this section illustrates a technique to sizing the actual requirements of software
as they are defined at lower and lower levels of documentation that differs from the technique
described for the ‘Everest’ system above. This example is also from a different software
domain, namely from a complex, real-time telecoms software architecture. The example was
provided by a major manufacturer of telecommunications equipment, as an illustration of their
current practice.

The description below uses the manufacturer’s terminology [8].

The purpose is to measure the functional size as the actual requirements evolve, as input to a
project estimating method.

Description and analysis of the software architecture

Figure 12.1 a) shows a ‘Logical Network Element’ (or LNE) within the software architecture,
and the analysis of its functionality into two lower levels of documentation, namely the ‘System
Component’ (or SC) level in Figure 12.1 b) and the ’Sub-system’ (or SS) level in Figure 12.1
c).

Models such as shown in Figure 12.1 are produced in the telecoms company in three stages
(at each level of documentation) and the goal is to be able to estimate the project effort to
develop the whole LNE at each stage. The analysis described here is therefore a form of ‘early
approximate sizing’. But this case and its analysis also helps illustrate other issues.

A first key difference between the way this telecoms architecture is described and analysed
compared with that of the ‘Everest’ example in section above is that at each level of
documentation the measurement scope is sub-divided so that each ‘component’ revealed at
each level is measured separately. (Remember, in the ‘Everest’ example, the measurement
scope was unchanged as the analysis zoomed-in on the lower levels of documentation.) This
technique therefore involves ‘decomposition’ of the functionality as it is analysed, in addition
to the ‘zooming-in’.

An inevitable consequence of decomposing a piece of software (and hence of decomposing
its actual requirements and its measurement scope) is that new functional users appear with
each decomposition. Example: if a piece of software is decomposed into two inter-related
components, then the two components must become functional users of each other and will
exchange data movements. Hence, if the total size of several components is needed, the
measurer will have to consider the rules on aggregating size measurements (see the
Measurement Manual)

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 50
Copyright © 2020

The different measurement scopes of the LNE are shown in Fig. 12.1 by the solid line at the
LNE level, the dashed lines at the SC level and the dotted lines at the SS level.

Logically, at each level of documentation, the components appear to communicate with each
other directly. (In practice, of course, the components communicate via an operating system;
this becomes obvious in practice at the lowest SS level of documentation, which is the level at
which physical components are developed.) For sizing purposes, therefore, the components
of the architecture at each level of documentation may be considered as functional users of
each other.

Figure 12.1 a) shows, at the highest level of documentation, the single functional process of
Logical Network Element 1 (LNE1). As far as this functional process is concerned, LNE1 has
two functional users at the same level of documentation, namely LNE2 and LNE3. These
users are peer pieces of software. Some data enters LNE1 from LNE2 and some data is sent
by LNE1 to LNE2 and to LNE3. Some data is also sent to and retrieved from persistent storage
by LNE1.

At one lower level of documentation, Figure 12.1 b) shows that LNE1 is decomposed into four
System Components, namely SC1 to SC4. At this level, the functional users of each System
Component are either other System Components in LNE1 or are System Components within
LNE2 and LNE3 (the Figure does not illustrate this latter aspect).

Figure 12.1 b) shows that the single functional process at the LNE level has been decomposed
into three functional processes, one in each of the System Components SC1, SC2 and SC4.
(We now see that SC3 does not participate in the functional process at the LNE level.)

a) Line Network Element Level

b) Sub-Component Level

c) Sub-system Level

Figure 12.1 - A Line Network Element and its analysis into two lower levels of documentation.

LNE

SC

SS

(Logical Network
Element)

(Sub-System)

(System
Component)

(Persistent
storage)

Key

LNE2

LNE3

LNE2

LNE1

SC1 SC2

SC3 SC4

LNE1

LNE2

LNE3

LNE2

SC1
SC2

SC3

SC4

SS11

SS12

SS13

SS21
SS22

SS23

SS41
SS42

SS43

LNE1

LNE2

LNE3

LNE2

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 51
Copyright © 2020

At one lower level of documentation, Figure 12.1 b) shows that LNE1 is decomposed into four
System Components, namely SC1 to SC4. At this level, the functional users of each System
Component are either other System Components in LNE1 or are System Components within
LNE2 and LNE3 (the Figure does not illustrate this latter aspect).

Figure 12.1 b) shows that the single functional process at the LNE level has been decomposed
into three functional processes, one in each of the System Components SC1, SC2 and SC4.
(We now see that SC3 does not participate in the functional process at the LNE level.)

At the lowest level of documentation, Figure 12.1 c) shows that each System Component is
decomposed into a number of Sub-systems (SS’s). At this level, the functional users of any
one Sub-system are either other Sub-systems within LNE1 or are Sub-systems in other LNE’s
(the latter is not illustrated in the Figure). The single functional process at the LNE level has
now been decomposed into nine functional processes at this lowest level of documentation,
one in each Sub-system.

At each level of documentation, some data is moved to persistent storage and some is
retrieved from persistent storage. Figure 12.1 shows which components of LNE1 are involved
in this functionality as we decompose to lower levels of documentation. (For diagramming
convenience, persistent storage is shown as a ‘common resource’, irrespective of the levels of
documentation and decomposition. Strictly speaking, as this Figure shows that at each level
of documentation the functionality is also decomposed, resulting in new measurement scopes,
persistent storage should be shown within each scope where it is used.)

For information, the physical sequence of Data Movements (DM) at the Sub-system level of
documentation in LNE1 is as follows:

a) The triggering Entry to SS11 (of SC1 of LNE1) comes from LNE2 (sent by one of its SS’s
within one of its SC’s)

b) After exchanges of DMs between SS’s (which may be part of the same or different SC’s),
LNE1 sends an Exit (by SS22 of SC2) to a SS within LNE2 (e.g. for requesting more
information from the original initiator of the functional process)

c) An SS within LNE2 then responds with another Entry (different from the triggering Entry)
to LNE1 (actually to SS13 inside SC1)

d) Again after some internal DMs, LNE1 sends (by SS43 inside SC4) a final Exit to a SS within
LNE3

e) In addition Reads and Writes take place during the process.

As stated above, it is only at the Sub-system level that project teams actually start to develop
software; Sub-systems are autonomous applications. This is important because it is at this
level of documentation that the telecoms software company that provided this example wishes
to carry out individual project estimating.

Sizing the Logical Network Element.

With this analysis approach, the size of the functionality shown in Figure 12.1 apparently
increases as more components and functional processes are revealed at the lower levels of
documentation.

This ‘growth’ is analogous to what we see in road maps. As we move from a large-scale map
to one of smaller scale showing more roads, so the size of the road network appears to
increase, even though the unit of measure for both maps (e.g. the kilometre) is the same for
each scale.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 52
Copyright © 2020

The sizes of the functionality on Figure 9.1 at each level of documentation are as follows.

• At the LNE level of documentation (one functional process) = 8 CFP

• At the SC level of documentation (three functional processes) = 20 CFP

• (At the SS level of documentation (eight functional processes) = 32 CFP

Note that as a check on the measurements in this example, the size at any one level of
documentation can be obtained from the sizes at the immediately lower level by eliminating all
the inter-component Entries and Exits for the components at the lower level.

Discussion of the analysis of the LNE example.

The first main observation from the analysis of this example is that when described in the
terminology of the telecoms equipment manufacturer, it suggests a weakness in the definition
of the ‘functional process level of documentation’ given in chapter 1, which states:

“A level of documentation of the description of a piece of software at which:

• the functional users are individual humans or engineered devices or pieces of software
(and not any groups of these) AND (etc.)”

The difficulty in interpreting this definition in this context is that all the functional users in the
LNE case are ‘pieces of software’, and it is impossible to define what is a piece of software in
any way that is generally-applicable for our purpose.

The analysis approach and terminology of the telecoms equipment company illustrated here
results in the measurement scope being re-defined at each level of documentation, and
functional processes being defined at three levels of documentation, rather than the one
standard level assumed by the definition.

This problem can be avoided by changing the telecom company’s terminology so that the term
‘functional process’ would be used only at the Sub-system level. At the higher levels, terms
such as ‘super-process’ and ‘super-super-process’ could be used.

But there is a more fundamental issue that whatever names are used, the definition of the
‘functional process level of documentation’ will be specific to this company. For the company
this definition is relatively easy to interpret because it is the level at which they set project
teams to work to develop ‘individual …. pieces of software (and not any groups of these)’, as
per the definition. However, this approach does not guarantee that what this company means
by ‘a piece of software’ will be comparable to that of another company. Software can be
aggregated or decomposed to multiple levels of documentation, and the types of the software’s
components can vary with the technology used. One company’s ‘piece of software’ might be
a complete Logical Network Element. Another company’s piece might be a single re-usable
object (perhaps a saleable product), which would clearly be a different level of documentation.

The problem with the definition of the ‘functional process level of documentation’ should not
arise when the context includes functional users that are ‘individual human and/or engineered
devices’, which should always be accurately identifiable. In such a context, if there are also
functional users that are ‘pieces of software’, then the level of documentation of those software
users and the data exchanges with the software being measured should be the same as that
of the human or engineered device functional users.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 53
Copyright © 2020

Computing ‘scaling factors’ for the LNE example.

Supposing that in the LNE example we are at the stage of having completed the specification
partly at the highest level of documentation of the LNE’s and partly at the SC level, and wish
to determine the size of the eventual software at the lowest level of documentation of the Sub-
systems for input to a project estimation method. For this, we need scaling factors to multiply
the measured sizes of an LNE or a SC to obtain the size measured at the lowest SS level.

If we were using the size measurements given in previous sections on this LNE1 to calibrate
an approximate technique to sizing other LNE’s and their SC’s at the SS level, we would
conclude that the scaling factors to be used would be as follows.

• To scale a size measured at the LNE level to a size measured at the SS level, multiply the
LNE size by 4.0 (32 / 8)

• To scale a size measured at the SC level to a size measured at the SS level, multiply the
SC size by 1.6 (32 / 20).

In practice, it is likely that at the moment when a project estimate is required necessitating a
functional size measurement as input, the actual requirements will have been developed at
varying levels of documentation. In such circumstances the measurer will have to exercise
judgment when estimating the size at the required level of documentation by using a mixture
of actual and scaled measurements.

12.2 Functional size measurements and standard levels of decomposition.

The issue to be briefly dealt with in this section has already been referred to above, namely
that to ensure comparability of measurements there is a need to standardize levels of
decomposition as well as to use the standard functional process level of documentation. This
can be difficult when requirements are evolving in different groups working in parallel on a
large distributed software system.

Establishing the relationships between the level of documentation of the requirements (driven
by the customer) and the level of decomposition of the software (driven by the system
architects) is complex and is best carried out in four steps, as follows:

Starting point: We wish to measure a size of a large evolving software system for the
purposes of effort estimation when the software architecture is broadly established but the
requirements are still evolving.

Step 1. Identify the level of decomposition of each piece of software in the architecture which
it is of interest to measure separately and define its measurement scope.

Examples of levels of decomposition of software, hence of possible measurement scopes:

• The telecoms system, the subject of section 12.2, could be measured at any of the
LNE, system component or sub-system levels (as described in Fig. 12.1) or even at
lower levels of decomposition such as that of sub-system major components, re-usable
components, etc.

• In the business application domain, software can be measured at the level of a whole
application, or of a major application component (e.g. of a ‘n-tier’ architecture) or an
object class, or re-usable component, etc. (But note that in industries such as banking,
where software systems have grown and evolved over decades, it can be difficult to
define and distinguish an ‘application’.)

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 54
Copyright © 2020

Step 2. Identify the level of documentation of the actual requirements of each piece of software
to be measured whose scope was defined in step 1.

Step 3. Identify the functional users of the piece(s) of software defined in Step 1 that cannot
be decomposed (individual humans or pieces of hardware). Individual humans or pieces of
hardware interact with pieces of software at only a limited number of software levels of
decomposition of practical interest for measurement purposes. (Example, it may be useful to
measure the size of business application software as seen by a human user at only two levels
of decomposition, namely that of a whole application, or of the user interface component of a
multi-tier application.

We can therefore define precisely the few combinations of human or hardware functional users
and levels of decomposition of the software with which they interact. It follows that we can
precisely identify the functional process level of documentation for these combinations,
because we can identify the event-types that the functional users must respond to or that they
generate. Hence we can identify the functional processes precisely and our functional size
measurements can be reliably compared from different sources for these combinations. It also
follows that we can apply the approximation techniques described in this Guide to any
requirements that are at higher levels of documentation than the functional process level.

Step 4. Identify any functional users of the pieces of software identified in Step 1 that are other
pieces of software. These can exist at multiple levels of decomposition. There are no standard
levels of decomposition of software. In addition, the actual requirements of both the software
being measured and of its software functional users can be expressed at multiple levels of
documentation. It is therefore intrinsically difficult in practice to define a universal standard for
a functional process level of documentation when the software being measured and all its
functional users are pieces of software. It follows that it is equally difficult to identify and
measure functional processes in a way that ensures measurements from all sources are
comparable for this ‘software/software’ combination. Similarly, it is difficult to apply the
approximation techniques described in this Guide for this ‘software/software’ combination.

These difficulties can be overcome within an organization or between collaborating
organizations that can define local standards for software levels of decomposition, and for
levels of documentation if needed for approximate sizing.

To enable greater size measurement comparability, COSMIC recommends that suppliers of
services or tools that use functional size measurements specify standard levels of
decomposition of software for which their service or tool can accept the size measurements.

COSMIC suggests the following as example candidates for standardization of levels of
decomposition in the domain of business application software.

• A ‘whole application’

• A major component of a whole application

• A re-usable object-class

The permitted functional users of software at all these levels of decomposition can be humans
or other pieces of software at any of these levels of decomposition, Example: a whole
application can be a functional user of a SOA component, and vice versa. But the case of a
human user of a re-usable object-class is not likely to be of interest.

These standard ‘levels of decomposition’ are also typical examples of measurement scopes,
as given in the Measurement Manual.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 55
Copyright © 2020

13
13. LOCALIZATION (CALIBRATION) GUIDELINES.

General guidance for establishing a locally-defined technique to approximate COSMIC sizing:

a) The local organization should define one or more (types of) artifact at a higher level of
documentation than the level at which functional processes and their data movements are
known, that describe the software functionality in a way that can be measured (i.e. at least
identified and counted)

b) Artifacts selected in step a) might be, in ascending order of level of documentation,
documents describing actual requirements at the functional process level, the ‘Use Case’
level, the sub-system level, etc. (Note that there is no standard terminology for levels of
documentation above the level of a functional process6.) Great care is therefore needed
when defining standard artifacts suitable for approximate measurement above the
functional process level of documentation.

c) The high-level artifacts selected for the measurements to calibrate the scaling factor must
be representative of the software that needs to be approximated in the future by the locally-
defined technique.

d) After applying a locally-defined technique to approximate some high-level actual
requirements, it is important to learn from the experience by establishing the accuracy of
the approximate measurements when the detailed actual requirements of the same
software become known. This is done by:

• first measuring the accurate sizes for at least a sample of the detailed actual
requirements.

• Then compare the approximate sizes with the accurate measurements to check
that the scaling factor(s) used were reasonable.

For instance, a result in a particular project could be that the actual total size
when the final actual requirements are accurately measured turns out to be
significantly greater than the measurements obtained by the approximate
technique. The inaccuracy might be due to using inappropriate scaling factors
and/or ‘scope creep’ on the project concerned. This result could be used to
adapt the approximate sizing technique to take account of such factors in the
future. (See section 14.2 for more on taking into account ‘scope creep’.)

e) Given the uncertainty in approximate sizing, a range or some indication of the accuracy
should be given when reporting an approximate size measurement, based on the
established accuracy by comparing with the detailed size measurement as described under
e).

f) The procedures to establish the accuracy of an approximate size measurement should also
be established locally. The accuracy of any particular measurement will depend on the
following two factors.

6 Terms like ‘Use Case’ are of course defined, but in spite of such definitions, practice shows there is no guarantee
that for a given actual requirement, two analysts will analyse the same number of Use Cases. Each organization
must therefore establish its own understanding of what constitutes one Use Case.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 56
Copyright © 2020

• The level of detail and uncertainty of the requirements, which obviously varies with the
state of progress of the project (See section 1.5 on the quality of requirements, the
examples of section 12.1, and the guidance on ‘scope creep’ in section 14.2);

• The particular approximate sizing technique used for the measurement. (Example: the
more detailed technique of Chapter 4 should, if well calibrated, give a more accurate
size measurement than the technique of Chapter 2, for the same quality of the
requirements.)

g) Best practice is then to produce a ‘three point’ estimate of the size, where the three points
are the minimum size estimate, the most likely size estimate and the maximum size
estimate. Presenting these three figures to show a range of uncertainty on the approximate
size measurement is much more valuable to decision-makers and to anyone who must
estimate project effort than just reporting the most-likely estimate.

h) The Early and Quick technique described in Chapter 8 includes a three-point size
estimation element.

i) For more on the subject of three-point estimation, see for example Wikipedia.

https://en.wikipedia.org/wiki/Three-point_estimation

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 57
Copyright © 2020

14
14. APPROXIMATE SIZING OF CHANGES OF FUNCTIONALITY AND

SCOPE CREEP.

14.1 Approximate sizing of changes to functionality.

To approximate the size of an actual requirement to change some existing software, the
general guidance follows the same approach as for new software. If there is an existing
catalogue of functional processes and their sizes (or size classification), then one of the two
following techniques may be chosen.

a) If possible, based on the Functional User Requirements for the changes, judge which data
movements of the relevant functional processes will be impacted and count these data
movements;

b) Otherwise, estimate for each functional process the number or proportion of data
movements that must be changed. For example, if a functional process to be changed is
sized as 12 CFP and it is estimated that the change affects 25% of the data movements,
then the size of the change is 3 CFP.

Use these numbers or proportions instead of the total sizes of the functional processes to be
changed to complement one of the approximation techniques described above.

If there is no catalogue of existing functional processes, the first task would be to identify the
functional processes affected by the actual change requirements, and then follow one of the
approximate techniques above.

14.2 Approximate sizing and scope creep.

Experience shows that early in the life of a software development project, the functional size
of the software tends to increase as the project progresses from outline actual requirements
to detailed actual requirements, to functional specification, etc. This phenomenon, often
referred to as ‘scope creep’, can arise because

• the scope expands beyond that originally planned to include additional areas of
functionality

• and/or, as the detail becomes clearer, the required functionality turns out to be more
extensive (e.g. to require more data movements per functional process) than was originally
envisaged

• and/or Non-Functional Requirements may turn out to be (partly) implemented in software
[38]

(It can also happen, of course, that the scope is reduced from the originally planned scope,
e.g. due to budget cuts.)

The approximate sizing techniques described in this Guide do not explicitly take into account
scope creep. When using these approximation techniques for early sizing therefore, potential
scope creep should be considered as an additional factor. If potential scope creep is ignored,
there is a risk of under-estimating the final software size and hence the project effort.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 58
Copyright © 2020

Estimating the potential for scope creep on a particular project goes beyond the scope of this
Guide. However, it may be helpful to address the following questions:

• Are the actual requirements on this project particularly uncertain at the outset? If so, what
correction (or ‘contingency’) to the approximate size should be made for possible scope
creep?

• If scope creep is endemic within the organization, then we can use past measurements to
help quantify this phenomenon. For instance, in a given organization and using a given
development process for which many measurements exist, it may be possible to find a
recurrent pattern such as ‘by the end of phase 3, sizes are typically 30% greater than at
the end of phase 1’.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 59
Copyright © 2020

15
15. CONCLUSIONS ON TECHNIQUES TO APPROXIMATE SIZING.

Techniques to approximate sizing can be made to work and are valuable for use early in a new
software project‘s life and/or can save time and effort compared with sizing accurately using
the standard COSMIC measurement method. Approximate sizing may also be necessary
when the actual requirements are unclear. But approximate sizing techniques need to be used
with care.

• Whatever the purpose of using an technique for approximate sizing, whenever further
information becomes available enabling a more accurate and/or accurate sizing, the
measurer should refine and update the measurement. This is especially required when
using the measurement results as an input to estimation (such as effort prediction) – due
to the phenomenon of error propagation [40].

• For obvious and similar reasons, no approximately measured size should be accepted as
the ‘actual’ size in contractual situations, or analogous cases, where accurate figures are
required – any preliminary approximate sizing should be replaced by standard
measurements in the final stages of projects subject to such constraints.

When there is a need for approximate sizing, the organisation should:

• choose a technique which is optimal for the purpose of the measurement, given the
availability of data for the calibration, the time available for the measurement and the
accuracy required of the approximate size;

• calibrate the technique using accurately-measured local data on software that is
comparable to that for which the approximate sizes must be measured;

• when actual requirements are unclear or incomplete, seek help to try to at least identify all
the functional processes

• pay particular attention to identifying any large functional processes and to determining
good scaling factors for them, as they can make a large contribution to the total size even
though they are few in number;

• consider whether an allowance (or ‘contingency’) should be made for ‘scope creep’ and for
the contribution that incorporating the Non-Functional Requirements may lead to when
publishing an approximate size;

• estimate and report the plus or minus uncertainty on the approximate size, mentioning any
contingency that has been made for scope creep; estimating the uncertainty on an
approximate size is especially important in contractual situations.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 60
Copyright © 2020

References.
REFERENCES.

[1] C.R. Symons and A. Lesterhuis, “Introduction to the COSMIC method of measuring
software”, version 1.1, January 2016.

[2] F.W. Vogelezang, C.R. Symons, A. Lesterhuis, R. Meli and M. Daneva, "Approximate
COSMIC Functional Size: Guideline for approximate COSMIC Functional Size Measure-
ment", 23rd International Workshop on Software Measurement and 8th International
Conference on Software Process and Product Measurement – IWSM-MENSURA,
Ankara, Turkey, 2013.

[3] C.R. Symons and A. Lesterhuis, "The COSMIC Functional Size Measurement Method
Version 4.0.2 Measurement Manual, the COSMIC implementation guide for ISO/IEC
19761:2017", December 2017.

[4] H.C. Bauman, "Accuracy Considerations for Capital Cost Estimation", Industrial &
Engineering Chemistry, April 1958.

[5] B. Boehm, “Software Engineering Economics”, Prentice-Hall, 1981.

[6] E. Berardi, C.R. Symons and S. Trudel, “Guideline for the use of COSMIC FSM to
manage Agile projects”, September 2011.

[7] S. McConnell, "Software Estimation, Demystifying the Black Art", Microsoft Press, 2006.

[8] K. Almakadmeh, "Development of a scaling factors framework to improve the
approximation of software functional size with COSMIC - ISO19761", PhD thesis, Ecole
Technologie Supérieure - Université du Québec, Montréal, Canada,2013.

[9] A. Abran, J-M. Desharnais, S. Oligny, D. Saint-Pierre and C.R. Symons, "COSMIC-FFP
Measurement Manual version 2.2, the COSMIC implementation guide for ISO/IEC
19761:2003".

[10] F.W. Vogelezang, "Early estimating using COSMIC-FFP", Proceedings of the 2nd
Software Measurement European Forum, March 16-18, 2005, Rome.

[11] H.S. van Heeringen, E.W.M. van Gorp and T.G. Prins, "Functional size measurement –
accuracy versus costs – is it really worth it?", Software Measurement European Forum -
SMEF, Rome, Italy 2009.

[12] L. de Marco, F. Ferrucci and C. Gravino, "Approximate COSMIC size to early estimate
Web application development effort", 39th Euromicro Conference on Software
Engineering and Advanced Applications - SEAA, Santander, Spain, September 4-6,
2013.

[13] V. del Bianco, L. Lavazza, G. Liu, S. Morasca and A. Zaid Abualkishik, “Model-based
early and rapid estimation of COSMIC functional size – An experimental evaluation”,
Information and Software Technology, Volume 56, Issue 10, Oct. 2014, pp 1253-1267.

[14] L. Lavazza and S. Morasca, “Empirical evaluation and proposals for bands-based
COSMIC early estimation methods”, Information and Software Technology, Vol.109,
May 2019, pp 108-125.

[15] A. Lesterhuis and C.R. Symons, "The COSMIC Functional Size Measurement Method
version 3.0 Advanced and Related topics", December 2007.

[16] F.W. Vogelezang and T.G. Prins, "Approximate size measurement with the COSMIC
method: Factors of influence", Software Measurement European Forum - SMEF, Roma,
Italia, 2007.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 61
Copyright © 2020

[17] F. Valdés-Souto and A. Abran, “Improving the COSMIC approximate sizing using the
fuzzy logic EPCU model”, Joint International Workshop on Software Measurement and
International Conference on Software Process and Product Measurement IWSM-
MENSURA, Cracow, Poland, 2015.

[18] F. Valdés-Souto, Analyzing the performance of two COSMIC approximation sizing
techniques at the functional process level, Sci. Comput. Program. 135 (2017) 105–121.

[19] F. Valdés- Souto, “Analyzing the Performance of Two COSMIC Sizing Approximation
Techniques using FUR at the Use Case Level”, Joint International Workshop on Software
Measurement and International Conference on Software Process and Product
Measurement - IWSM-MENSURA, Beijing, China, September 2018.

[20] F. Valdes Souto and A. Abran, "Case Study: COSMIC Approximate Sizing Approach
Without Using Historical Data", Joint 22nd International Workshop on Software
Measurement and 7th International Conference on Software Process and Product
Measurement – IWSM-MENSURA, Assisi, Italy, 2012.

[21] F. Valdés-Souto and A. Abran, “COSMIC Approximate Sizing Using a Fuzzy Logic
Approach: A Quantitative Case Study with Industry Data”, Joint International Workshop
on Software Measurement and International Conference on Software Process and
Product Measurement - IWSM-MENSURA, Rotterdam, the Netherlands, 2014.

[22] L. Lavazza and S. Morasca, “An empirical evaluation of two COSMIC Early Estimation
methods”, Joint 26th International Workshop on Software Measurement and the 11th
International Conference on Software Process and Product Measurement – IWSM-
MENSURA, Berlin, Germany, October 2016.

[23] C.R. Symons, and C. Gencel, ‘From requirements to project effort estimates: work in
progress (still?)’, Requirements Engineering for Software Quality (REFSQ 2013)
conference, Essen, Germany, April 2013.

[24] M. Ecar, F. Kepler and J.P.S. da Silva, “COSMIC User Story Standard”, International
Conference on Agile Software Development (XP 2018), Agile Processes in Software
Engineering and Extreme Programming, pp 3-18.

[25] S. Trudel, J-M. Desharnais, J. Cloutier, “Functional Size Measurement Patterns: A
Proposed Approach”, 26th International Workshop on Software Measurement and the
11th International Conference on Software Process and Product Measurement – IWSM-
MENSURA, Berlin (Germany), 5-7 October 2016.

[26] C.R. Symons, Guideline for ‘Measurement Strategy Patterns’, Ensuring that COSMIC
size measurements may be compared, March 2013.

[27] C.R. Symons, ‘Software sizing and estimating: MkII FPA’, John Wiley & Sons, 1991.

[28] R. Meli, “Reference Manual release version 1.1 of IFPUG E&Q FP method release 3.1”,
april 2012, dpo.it/wp-content/uploads/2018/01/EQFP-IFPUG-31-RM-11-EN-P.pdf

[29] R. Meli, "Early Function Points : a new estimation method for software projects", ESCOM
97, Berlin (Germany) 1997.

[30] T. Iorio, R. Meli and F. Perna, "Early & Quick Function Points® v3.0: Enhancements for
a Publicly Available Method", Software Measurement European Forum (SMEF 2007),
Roma, Italia, 2007.

[31] L. Santillo, "Early & Quick COSMIC-FFP Analysis Using the Analytic Hierarchy Process."
10th International Workshop on Software Measurement, Lecture Notes in Computer
Science 2006, (pp. 147-160), Berlin (Germany) 2000.

[32] R. Meli, “Early & Quick Function Point Method - An Empirical Validation Experiment”,
International Conference on Advances and Trends in Software Engineering (SOFTENG
2015), Barcelona, Spain, April 2015.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 62
Copyright © 2020

[33] I. Hussain, L. Kosseim and O.Ormandjieva, "Approximation of COSMIC functional size
to support early effort estimation in Agile", Data & Knowledge Engineering 85 (2013) 2-
14.

[34] F. Valdés, A. Abran, "Comparing the Estimation Performance of the EPCU Model with
the Expert Judgment Estimation Approach Using Data from Industry", chapter 15, in
'Software Engineering Research, Management and Application 2010, published in
'Studies in Computational Intelligence', Volume 296, Springer-Verlag, Berlin, pages 227-
240.

[35] M. Ochodek, “Functional size approximation based on use-case names”, Information
and Software Technology, Volume 80, 2016, pp 73-88.

[36] M. Haoues, A. Sellami and H. Ben-Abdallah, “A Rapid Measurement Procedure for
Sizing Web and Mobile Applications based on COSMIC FSM Method”, 27th International
Workshop on Software Measurement and 12th International Conference on Software
Process and Product Measurement – IWSM-MENSURA, Gothenburg, Sweden, October
2017, pp 130-138.

[37] A. Abran, A. Lesterhuis, and C.R. Symons, “Guideline for Assuring the Accuracy of
Measurements”, version 1.1, July 2018.

[38] F. AbuTalib, D. Giannacopoulos and A. Abran, "Designing a Measurement Method for
the Portability Non-Functional Requirement", 23rd International Workshop on Software
Measurement & 8th International Conference on Software Process and Product
Measurement – IWSM-MENSURA, October 2013, Ankara (Turkey).

[39] F.W. Vogelezang, C.R. Symons and A. Lesterhuis, "Web Advice Module – COSMIC
Case Study", published January 2014 by NESMA (www.nesma.org).

[40] L. Santillo, "Error Propagation in Software Measurement and Estimation", 16th
International Workshop on Software Measurement - IWSM, October 2006, Potsdam
(Germany).

[41] L. Santillo, "EASY Function Points – ‘SMART’ Approximation Technique for the IFPUG
and COSMIC Methods", 22nd International Workshop on Software Measurement & 7th
International Conference on Software Process and Product Measurement – IWSM-
MENSURA, November 2012, Assisi (Italy).

[42] A. Abran, S. Vedadi and O. Demirors, “Development of COSMIC Scaling Factors using
Classification of Functional Requirements”, 29th International Workshop on Software
Measurement & 14th International Conference on Software Process and Product
Measurement - IWSM-MENSURA, October 2019, Haarlem (the Netherlands).

[43] ISO Guide 99: International vocabulary of basic and general terms in metrology (VIM),
International Organization for Standardization – ISO, 2019.

Early Software Sizing with COSMIC: Experts Guide – 2nd Edition 63
Copyright © 2020

Glossary
GLOSSARY OF TERMS

The terms in this Glossary are specific to this Guideline. For other COSMIC terms, see the
main Glossary in the Measurement Manual v4.0.2.

Accuracy. [43]
Closeness of agreement between a measured quantity value and a true quantity value of a
measurand.
NOTE 1 The concept ‘measurement accuracy’ is not a quantity and is not given a numerical quantity
value. A measurement is said to be more accurate when it offers a smaller measurement error.
NOTE 2 The term “measurement accuracy” should not be used for measurement trueness and the
term “measurement precision” should not be used for ‘measurement accuracy’, which, however, is
related to both these concepts.
NOTE 3 ‘Measurement accuracy’ is sometimes understood as closeness of agreement between
measured quantity values that are being attributed to the measurand.

Approximate Sizing.

1. Approximate measurement of a size.

2. Measurement of a size by an approximate technique.

Calibration

Determining the scaling factors or classification values to be used in the local environment in
which the approximation technique is used instead of the scaling factors or classification values
published in reference documents like this Guideline, aiming for the most accurate possible
result of the application of the approximation technique.

Classification

Allocating a part of the actual requirements to a defined class (or reference piece) of
requirements whose size has been calibrated in CFP.

Localization (Calibration)

Calibrating scaling factors or classification values to an environment that is representative of
the environment the approximation technique is to be used in.

Precision.

The degree of exactness or discrimination with which a quantity is stated (ISO/IEC
24765:2010) Example: a precision of 2 decimal places versus a precision of 5 decimal places.

Scaling factor.

A constant that is used to convert a size measured under one set of conditions (e.g. one level
of documentation of some actual requirements) to a size measured under another set of
conditions (e.g. another level of documentation of the same requirements).

