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FFoorreewwoorrdd  

Purpose of this Guideline and relationship to the COSMIC Measurement Manual 

To help those working in the domain of real-time software to map the concepts they typically 
use to determine and model the requirements of real-time software, to the concepts of the 
COSMIC method of measuring a functional size of software. The Guideline also provides many 
measurement examples and illustrative cases. 

• The Guideline is hence an aid-to-translation from the terminology used by real-time 
software practitioners to the terminology of the COSMIC method. No additional principle or 
rule is required to apply the COSMIC method to the real-time domain, beyond those that 
are provided in the COSMIC Measurement Manual [1]. 

Intended readership of the Guideline 

To be used by anyone involved in defining, specifying, developing and managing software 
products in the real-time domain [2]. This includes the members of the software metrics team 
and/or developers who have the task of measuring the functional size of real-time software 
according to the COSMIC method. It should also be of interest to those who have to interpret 
and use the results of such measurements. This Guideline is not tied to any particular real-
time software development methodology or life-cycle model though some examples refer to 
specific real-time requirements determination or modeling methods. Note that COSMIC does 
not endorse any particular method or tool. 

Readers of this Guideline are assumed to be familiar with the COSMIC Measurement Manual 
[1]. For ease of maintenance, there is little duplication of material between that document and 
this Guideline. 

Scope of applicability of this Guideline  

This Guideline concerns the measurement of ‘real-time’ software, where we use this term in a 
broad sense. According to Wikipedia, ‘a system is said to be real-time if the total correctness 
of an operation depends not only upon its logical correctness, but also upon the time in which 
it is performed. Real-time systems, as well as their deadlines, are classified as ‘hard’, ‘firm’ or 
‘soft’ depending on the consequence of missing a deadline.’ 

For the purpose of this Guideline: it includes any software whose operation is controlled by a 
clock or timer mechanism. The COSMIC method can be used to measure the functionality of 
all these various types of ‘real-time’ software. (However, it should be noted that a specific 
timing constraint, or ‘deadline’ such as ‘all commands must be satisfied within 1 millisecond’ is 
a non-functional requirement. COSMIC functional sizing can measure any functionality needed 
to achieve this constraint but the specific numerical value of the constraint (1 millisecond, or 1 
microsecond, or whatever) does not actually affect the software functional size.) 

Examples of real-time software include the monitoring and control of industrial systems, 
automated acquisition of data from the environment and from scientific experiments, the 
monitoring and control of vehicle systems such as engines, ventilation, collision-avoidance, 
etc. and of household appliances. On the large scale, real-time systems control the world’s 
telephone networks, individual aircraft and air traffic, power plants and such-like. Some 
software systems such as hotel or airline reservation systems may be described as hybrids of 
business application software and real-time software, because they must process enquiries 
and bookings within real-time constraints. Finally, middleware and infrastructure software such 
as operating systems provide basic tasks and services for real-time applications and hence 
operate within real-time constraints. 

Introduction to the contents of the Guideline 

Chapter 1 discusses the characteristics of real-time software systems, the way their 
requirements are stated and how they can be mapped to COSMIC method concepts. Chapter 
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2 deals with the measurement strategy and in particular with identifying the functional users of 
the software to be measured. Chapter 3 discusses the mapping and measurement phases. 
Chapter 4 presents a number of illustrative examples. 

For definitions of the terms of the COSMIC method in general, please refer to the Glossary in 
the Measurement Manual [1]. Terms specific to the real-time software domain are defined in a 
separate Glossary at the end of this Guideline. Note that the literature on information 
technology uses a number of terms that are used with various meanings, but which are defined 
in the COSMIC method with very specific meanings. The Measurer must therefore be careful 
to correctly apply the terminology of the COSMIC method when using this Guideline. 

This version 2.0 of this Guideline complies with v4.0.2 of the COSMIC method. 

For a list of the significant changes that have been made from the previous version, see the 
Guideline Change History in the Appendix. 

 

The COSMIC Measurement Practices Committee. 
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11  
MAPPING REQUIREMENTS OF REAL-TIME SYSTEMS SOFTWARE TO COSMIC 
CONCEPTS 

The purpose of this chapter is to relate the terminology and concepts from the domain of real-
time software, as used in various methods of expressing real-time system requirements, to the 
concepts of the COSMIC functional size measurement method. If a functional size must be 
measured from the artefacts of some existing operational software, the Measurer should be 
able to use this same mapping of concepts to reverse engineer from the artefacts to the original 
functional user requirements (FUR), expressed in COSMIC terms, which can then be sized. 

Recalling the key features of the COSMIC method, a measurement should proceed in three 
phases, see [1]. 

In the Measurement Strategy phase, the aim is to determine the purpose of the measurement, 
hence the scope of the software to be measured and its functional users, i.e. the people or 
‘things’ that are the senders or intended recipients of data to/from the software to be measured. 

The level of granularity of the requirements and the level of decomposition of the software to 
be measured are also determined in this phase. 

In the Mapping phase, the aim is to map the FUR of the software to the concepts of the 
COSMIC method. We use ‘FUR’ to mean only the functional user requirements that are 
completely defined so that a precise COSMIC functional size measurement is possible. For 
requirements in general or where requirements have been specified at a ‘higher’ level of 
granularity, i.e. they have not yet evolved to a level of detail where a precise COSMIC size 
measurement is possible, we will use ‘requirements’ or ‘functional requirements’, as 
appropriate. 

The Mapping phase has two main steps. 

• Identify the ‘triggering events’ detected by (or generated by) the functional users that the 
software must respond to, and hence the corresponding ‘functional processes’ (see section 
3.1) 

• Identify the ‘objects of interest’ and ‘data groups’ referenced by the piece of software to be 
measured  and hence the ‘data movements’ (Entries, Exits, Reads and Writes) in each 
functional process (see section 3.2) 

In the Measurement phase (see section 3.3), the functional size of a piece of software is 
measured by counting the total number of data movements summed over all its functional 
processes. The functional size of a change to the requirements is measured by counting the 
total number of data movements that must be added, modified or deleted to satisfy the change 
requirement. 

Note that whenever we mention ‘triggering events’, ‘functional processes’, ‘data movements’, 
etc., we mean ‘types’ of these, not ‘occurrences’ (see the Measurement Manual [1], section 
1.3.3). 

1.1 Characteristics of real-time systems software 

Some of the characteristics of real-time systems relevant to measuring the functional size of 
the software are treated in the following sections.  

1.1.1 Event-driven systems 

Real-time software is often characterized as ‘event-driven’, i.e. its functionality must respond 
to events with real-time constraints. Its behaviour can be illustrated as a finite state machine 



 

Guideline for sizing real-time software, v2.0 - Copyright © 2019 6 

  

 

where each event (occurring outside the software) that the software must respond to may 
affect the state(s) of the software. The state does not necessarily change; for instance an 
enquiry functional process leaves the state of the machine unchanged on completion. 

A key concept of the COSMIC method is that an event is sensed by, or in real-time software 
sometimes generated by, a functional user of the software being measured. A functional user 
communicates the occurrence of an event to the software by sending a data group that is 
moved into a functional process by an Entry data movement, which triggers the functional 
process to start executing. This is shown in the following diagram taken from the COSMIC 
Measurement Manual [1]. 

  

Figure 1.1 – Relation between triggering event, functional user and functional process 

Three examples of triggering events help to explain the relationships shown in Figure 1.1: 

EXAMPLE 1: A sensor detects a stimulus to which the software must respond. 

• the triggering event is the stimulus that the sensor is designed to detect; 

• the functional user is the sensor; 

• the sensor generates and sends a message (a data group), which is moved into a 
functional process by its triggering Entry data movement, informing that the event has 
occurred; this message may also carry other data about the triggering event. 

EXAMPLE 2: A piece of software A must pass a request to a piece of software B for a 
service. 

• software A effectively generates the triggering event when it needs the service from 
software B by generating the request for service (a data group that provides the input 
data needed for the service); 

• software A is the functional user of software B; 

• the request for service message is moved into a functional process in software B by its 
triggering Entry; the functional process can then provide the service. 

EXAMPLE 3: A piece of software must execute a control process each time a clock ‘ticks’. 

• the clock effectively generates the triggering event by generating a ‘tick’ (a data group); 

• the clock is a functional user of the software; 

• the ‘tick data group’ is moved into a functional process by its triggering Entry to start its 
task. 

In all three examples the ‘task’ (the service) that the software must undertake, to respond to a 
triggering event, is a ‘functional process’, which is a sequence of data movements that is not 
complete until it has done all that is needed to meet its FUR for all possible responses to its 
triggering Entry. 

Note some important points: 

• Each functional process is independent of any other functional process, However, there 
can be various cardinalities (1:n, 1:1, or n:1) along the chain of triggering event – functional 
user – data group - functional process of Figure 1.1 (see the Measurement Manual [1] for 
examples).  
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• It may be that a series of functional processes can only occur in a particular sequence but 
this does not affect the fact that each functional process must be separately triggered. 
Example: a ‘stop process’ cannot occur before a ‘start process,’ but each process is 
triggered by a separate event. 

• A measured functional size does not take into account: 

• a) any specific real-time timing constraint, e.g. that a response is required in less than one 
millisecond, as this is a non-functional requirement (however, see section 4.2 for the 
measurement of timer functionality); 

• b) that some functional processes may be triggered by ‘routine’ triggering events, when the 
software is waiting for the triggering Entry, and others by ‘exceptional’ triggering events 
that give rise to interrupts (see next section 1.1.2). 

1.1.2 Interrupts 

An Interrupt Message is generated when a Functional User detects an event that requires the 
current activity of a system to be changed1. If a functional process has been triggered and 
started executing but has not yet terminated normally, an Interrupt Message may have one of 
two possible consequences. 

• If interrupts are handled by an interrupt handler outside the scope of the software being 
measured, e.g. in another layer than that of the software being measured, then by definition 
the functional processes of the software being measured do not need to take any account 
of the fact that interrupts may occur. 

• Alternatively the interrupt may be passed to the executing functional process as an 
additional Entry to its normal triggering Entry. The action the functional process must take 
on receipt of the Interrupt Entry will depend on its FUR. The action may result in additional 
data movements to those needed for normal execution and should be measured according 
to the normal rules. 

1.1.3 Functional size may vary with the functional users of real-time software 

The most common purpose of measuring a functional size of real-time software is for project 
performance measurement and/or project effort estimation. For most measurement purposes 
and scopes, the functional users of real-time software will be identified as the ‘things’ that 
interact directly with the software being measured. Typically these may be: 

• hardware input devices (e.g. sensors, measurement devices, a clock or timer); 

• hardware output devices (e.g. an actuator, a display, a communications line); 

• other pieces of software or hardware that may send input and/or receive output. 

However, the measurement purpose might be to size the functionality as seen by a human 
operator of a real-time system (e.g. the functionality provided at the operator workstation of a 
process control system or by the operator interface for a simple copier or mobile telephone). 

Humans interact indirectly with software. They are only aware of the functionality that is made 
available to them via their input-output interface. This functionality may be much less than the 
total functionality that the software must provide. It is therefore very important when measuring 
the functional size of real-time software to define clearly the functional users for which the 
measurement is valid. 

For more on types of functional users, see section 2.2. 

 
1 The ISO/IEC/IEEE 24765:2010 Systems and software engineering—Vocabulary standard defines ‘interrupt’ as 
‘(1) the suspension (or termination) of a process to handle an event external to the process (2) to cause the 
suspension (or termination) of a process (3) loosely, an interrupt request.’ (The words in brackets ‘or termination’ 
have been added for this Guideline.) 
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1.1.4 Embedded, executing on an operating system or federated? 

We use the term ‘application software’ for any software developed by order of a stakeholder 
to perform a particular set of tasks, and the term ‘infrastructure software’ for operating systems, 
software data handlers and device drivers that support applications. 

Real-time application software may be embedded on a chip (System on Chip), such as a field-
programmable gate array (FPGA) or a programmable logic controller (PLC), which may itself 
be specialized for the application, e.g. to survive rugged operating conditions. Very commonly, 
a simple embedded software application interacts directly with various input/output hardware 
devices, so does not need an operating system. 

Alternatively, real-time application software may be installed on a general purpose or 
specialized processor and execute with the support of a real-time operating system (RTOS). 
The RTOS may handle all messages to and from the various hardware input/output devices; 
it will reside in a different layer (an infrastructure or ‘lower’ layer) of the software architecture 
from the application. If the purpose is to measure the application software, the presence of the 
RTOS and any other layers of infrastructure software must be ignored, since a principle of the 
COSMIC method is that the scope of a measurement must be confined to one layer. The same 
principle applies to a need to measure some software in any of the infrastructure software 
layers; the scope of a measurement must always be confined to software within one layer. 

Federated systems, or a ‘system of systems’ comprise multiple elements of the above types 
of processors that communicate over a common bus or over a network. Each element in the 
system should be measured separately.  

1.2 Statements of requirements 

1.2.1 The problem of allocation of requirements to hardware or software 

A difficulty for measuring a functional size of real-time software is that often the requirements 
are stated at the ‘system’ level, i.e. before they are allocated to hardware or software (e.g. in 
the System on Chip concept), rather than explicitly at the software level. Obviously, until a 
decision has been made - and documented - on which requirements will be allocated to 
software, it is very difficult to agree on measurement results because various Measurers may 
make different assumptions on what the software will do.  

In principle the COSMIC method can be applied to functional requirements for information 
processing before they are allocated to software or to hardware, regardless of the eventual 
allocation decision. For example, it is straightforward to size the functionality of a pocket 
calculator using COSMIC without any knowledge of what hardware or software (if any) is 
involved.  

If system requirements must be measured for which their allocation between software and 
hardware is not clear and no expert advice is available to decide on the allocation, the 
Measurer should document any assumptions about the allocations and measure the software 
part. The lower and upper limits of the expected software functional size should also be 
indicated.  

1.2.2 Non-functional requirements 

For non-functional requirements, please see the Measurement Manual [1] and the ‘Guideline 
on Non-Functional & Project Requirements’ [5]. 
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22  
THE MEASUREMENT STRATEGY PHASE 

Determining the ‘strategy’ for a COSMIC functional size measurement requires that various 
parameters be considered before starting an actual measurement. The parameters, to be 
discussed in this chapter, are: 

• the purpose and scope(s) of the measurement; 

• The layer(s) of the software architecture, i.e. the layer in which each piece of the software 
to be measured resides 

• the functional users of the software to be measured (the ‘things’ that are the sources and 
intended recipients of the data to/from the software to be measured; 

• the level of granularity of the functional requirements of the software to be measured; 

• the level of decomposition of the software itself. 

The effort needed to determine the strategy is usually trivial but recording these parameters 
helps ensure that the resulting size measurement can always be interpreted reliably, i.e. future 
users of the measurement can always be sure they are comparing ‘apples with apples’.  

As an aid to determining a measurement strategy, the Guideline for 'Measurement Strategy 
Patterns' [4] describes, for each of several different types of software, a standard set of 
parameters for measuring software sizes, called a ‘measurement strategy pattern’. 

2.1 The purpose and scope of the measurement 

2.1.1 The measurement purpose 

The purpose of a measurement defines why a measurement is required, and what the result 
will be used for. 

2.1.2 The measurement scope 

The purpose of the measurement determines the scope of the measurement (which defines 
the extent of the functionality to be measured). A particular purpose may require more than 
one piece of software to be measured separately, e.g. for a project that must deliver multiple 
pieces of software, there would be more than one measurement scope. 

The scope of a piece of software to be measured must be confined to a single software layer. 
For more on distinguishing layers, see the Measurement Manual [1] 

2.2 Identifying the functional users 

When measuring real-time software, the functional users (‘the senders and/or intended 

recipients of data’) that interact with the software being measured will be typically any of the 

following: 

• a clock or timer (See the Glossary for use of these terms in this Guideline); 

• sensors (e.g. of temperature, pressure, voltage) that provide input, either when polled, or 
via interrupts, or by sending their data and/or status at intervals; 

• hardware devices that receive output (e.g. a valve or motor actuator, switch, lamp, heater); 

• hardware chips, having the ability to trigger functional processes (e.g. watchdog chips); 

• ‘dumb’ hardware memory such as a ROM which can only respond to a request for data; 

• communications devices (e.g. telephone lines, computer ports, aerials, loudspeakers, 
microphones); 
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• hardware devices with which humans interact (e.g. push buttons, keyboards or displays); 

• other pieces of software that supply data to or require data from the software being 
measured. 

It is valuable to draw a ‘context diagram' that shows the interaction of the software being 
measured with its functional users and with persistent storage, if used. When drawing a context 
diagram, it may be helpful to distinguish functional users that are: 

• sources of triggering events (and therefore of data groups that are moved by triggering 
Entries) 

• sources of other input data (e.g. that may be polled to provide data groups for non-
triggering Entries) 

• intended recipients, or destinations of data (to which Exits are sent) 

Some functional users may fulfil more than one of these roles, e.g. other pieces of software 
that interact with the software being measured, intelligent hardware devices or communication 
lines. 

All the above types of functional users may interact with the software being measured either 
directly, or indirectly, e.g. via an operating system or simple device driver software. However, 
the functionality of this ‘enabling’ software should be ignored (unless, of course, it is the subject 
of the measurement). 

Real-time software may also be measured from the viewpoint of humans as functional users 
(‘the senders and/or intended recipients of data’) that interact indirectly with the software being 
measured e.g. operators that start and stop the system, set parameters, monitor displays of 
operational performance, need to be notified of emergency conditions, etc. 

Consider the case where a button is pushed by a human operator. Is the functional user taken 
to be the button that interacts directly with the software to be measured, or the human that 
presses the button that interacts indirectly with the software? (They ’see’ different events. For 
the button, the event is ‘I have been pressed’. For the human operator, the event is perhaps 
an emergency condition that means he/she must raise an alarm). The choice depends on the 
purpose of the measurement. This choice of functional users must be one or the other; it makes 
no sense to measure a size, or to sum two sizes, as seen by a mix of functional user types 
(humans, hardware devices or other pieces of software). The following Examples illustrate 
where there is a choice of functional user. 

EXAMPLE 1. Section 4.1.1 describes an industry process which is controlled by a 
programmable logic controller (PLC). The purpose is to measure the size of all the 
embedded software functionality needed to make the system work, not just the limited view 
of the functionality as seen by a human operator. The process is started by a human 
operator pushing a start button. But in this example, given the measurement purpose, the 
start button is considered to be a functional user, not the operator who pushes it to start the 
process. 

EXAMPLE 2. The embedded software of a mobile phone (‘cellphone’) has to interact with 
several types of buttons, a screen (which may serve as an input device as well as output 
display), its battery, loudspeaker, aerial, etc. A human user of such a phone sees only a 
small part of the functionality that the software needs to provide its services. So it is possible 
to measure two functional sizes, depending on the choice of functional users. 

Toivonen [3] measured the functionality as seen by human users of two mobile phones in 
order to compare their ‘packing density’ (functional size / memory size). This was an 
important economic measure for the phone manufacturer. But the software sizes measured 
by Toivonen were much smaller than the sizes that the software engineers would have to 
develop to provide all of the functionality necessary for the phone to meet all the 
requirements of all its hardware/software functional users. 

Determining the functional users depends on the requirements, as the following example 
shows. 
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EXAMPLE 3. One or more buttons (-types)? 

Consider a factory that has a moving production line that can be stopped by pushing a 
button; there are buttons at several different locations along the line. Should the Measurer 
identify one or several functional users (types)? The answer depends on the functional 
‘user’ requirements that must be measured. The issue from this example is whether 
pressing the buttons leads to different triggering events and separate functional processes, 
e.g.  

a)  Requirements: Any operator may press a button to stop the line in an emergency. When 
a button is pressed, the system logs the time at which the line was stopped and the 
button that was pressed. There are many buttons along the line that all have the same 
effect. As the buttons are subject to the same FUR (‘pressing any button must stop the 
line’), identify only one functional user type and one functional process type to meet 
these FUR; 

b)  Requirements as case a) but there is also a requirement for a button in a supervisor’s 
office which is used by the supervisor to stop the line at the end of the work-day. If it 
has only the same effect as case a), then still identify only one functional user type – 
again they are subject to the same FUR - and one functional process type. 

c) Requirements as case b) but in addition to its use for stopping the line at any time, 
there is a requirement that when the button in the supervisor’s office is pressed AND 
held down for three seconds, the system stops the line and then produces a log of the 
day’s stop/start events. (The timing of the three seconds is controlled by the button 
itself.) We now have two functional users (any stop button on the line, and the 
supervisor’s stop button) and two functional processes. The two functional processes 
share some functionality (stopping the line) but are invoked by different triggering 
events (emergency stop, and end-of day stop) and have different effects. 

d) Requirements as case c) but there is an additional requirement that the supervisor has 
a second button that when pressed will start or re-start the line after it had been stopped 
and log the start time. Now we have three functional user types (any stop button on the 
line, and the supervisor’s stop and start buttons) and 3 functional processes (stop the 
line, stop the line and produce a report from the supervisor’s first button, and start or 
re-start the line from the supervisor’s second button). 

See also section 2.3 and real-time example 1 in section 3.5.9, both of the Measurement Manual 
[1]. See also the Tire Pressure Monitoring System case in section 4.5 of this Guideline. 

A context diagram should show persistent storage if any of the software’s functional processes 
are required to store data persistently (that is beyond the life of the process), or to retrieve data 
that has been stored persistently by another process. In the COSMIC Generic Software Model, 
persistent storage is available to any software being measured. The term does not imply any 
type of physical storage. 

2.3 Identifying the level of decomposition and the level of granularity 

Before starting a measurement of requirements, two aspects of the requirement artifacts must 
be considered to ensure that the measurement will satisfy its purpose, be as accurate as 
needed, and be interpreted with certainty by future users: 

• The ‘level of decomposition’ of the software. This refers to the sub-division of the software 
within its layer into separate components that may exchange or share data. The process 
of sub-division may start during the requirements definition stage when an initial 
requirement is seen to be too large to be handled by one team and so it is decided to sub-
divide the system into different sub-systems, sub-sub-systems, etc., which may be 
implemented at different times. Alternatively, sub-division into different components may 
arise if the software must be distributed over different processors. 

• The ‘level of granularity’ of the requirements for the software and/or its components, which 
concerns their level of detail. Often, in the life of a project, requirements are produced in a 
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‘top-down’ way, i.e. first in outline form, then as the project progresses being worked out in 
more and more detail (in other words at lower and lower levels of granularity). 

A precise COSMIC size measurement is possible only when the detail is sufficient to 
identify all the individual events that the software must respond to and hence the functional 
processes and their data movements. If a size measurement is required before these 
details are available, then an approximation variant of the COSMIC method may be used. 
These variants involve scaling sizes measured at the actual level of granularity of the 
requirements to the level of the functional processes and their data movements. Care must 
be taken with these methods since, at a given point in time, different parts of the 
requirements may have been worked out at different levels of detail. 

Note that any decomposition of the software should be determined before the level of 
granularity of the requirements, as the latter might vary from one component to another. As 
requirements and the software design evolve, both parameters should be monitored for their 
effect on the measurement approach. 

There is nothing specific to real-time software in considering these two factors. More detail on 
these two factors is given in the Measurement Manual [1]. The ‘Guideline for early or rapid 
COSMIC sizing of functional requirements’ [6] discusses several variants for approximate 
sizing. It includes a worked example of sizing the requirements of a telecoms software system 
at successively lower levels of granularity, 
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33  
THE MAPPING AND MEASUREMENT PHASES 

3.1 Identifying the triggering events and functional processes 

As described in section 1.1.1, software is triggered to do something by ‘events’ in the world of 
its functional users. Identifying the triggering events is therefore of critical importance because 
it enables the Measurer to identify the 'somethings', namely the functional processes. The 
steps for identifying functional processes in the functional user requirements (FUR) of a piece 
of software are as follows: 

1. Identify the separate events in the world of the functional users that the software being 
measured must respond to – the ‘triggering events’. (Triggering events can be identified 
from state diagrams and in entity life-cycle diagrams, since state transitions and entity life-
cycle transitions in the world of the functional users that the software must react to 
correspond to triggering events); 

2. Identify which functional user(s) of the software may respond to each triggering event; 

3. Identify the triggering Entry (or triggering Entries, one for each functional process to be 
triggered) that each functional user may initiate in response to the event (there may be 
non-triggering  Entries as well); 

4. Identify the functional processes, each started by its triggering Entry. 

EXAMPLE: The speedometer software of a car is connected to a rotation measurement 
sensor located on the drive shaft that measures its revolutions per minute (rpm), and to a 
key-in sensor, a clock, and a display unit for the driver. The software's persistent storage 
contains the parameters needed to send messages to a pre-defined variety of display units. 
The speedometer software is required to capture at key-in time the display parameters and 
initialize the installed display unit. A clock triggers the software at five millisecond intervals 
to capture rpm information from the drive shaft, calculate the speed, and send the speed to 
update the display unit using parameters appropriate for this display unit.  

 

Figure 3.1 – Context diagram for the speedometer software 

The context diagram shows the four functional users of the speedometer software, namely 
three input devices (the rpm sensor, the key-in sensor and the clock) and the one output 
device (the driver display). 

There are two events that need to be responded to by the speedometer software (i.e. are 
triggering events), They are the key-in event and the 5 millisecond clock tick. Hence the 
speedometer control software has two functional processes, FP1 and FP2. 
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• FP1 initializes the speedometer control software on the event of ‘key-in’ detected by the 
key-in sensor, which includes reading the parameter data for the display; 

• FP2 measures the speed on the event of the tick generated by the clock every 5 ms and 
sends the speed to the display. 

3.2 Identifying objects of interest, data groups and data movements 

3.2.1 Objects of interest and data groups  

Any functional process comprises sub-processes, called ‘data movements’ that both move 
data and are considered to account for related data manipulation. A data movement moves a 
data group whose attributes describe a single ‘object of interest’. 

In real-time software a data group often comprises one or a few data attributes, sent from an 
input device, e.g. a sensor to software, or of a signal sent from software to an output device, 
e.g. an actuator. The object of interest described by the data group can be determined from 
the devices involved. For instance, the speedometer control software in the example of section 
3.1 has the ‘RPM sensor’ as a functional user. This sensor sends a data group to the software, 
which has one attribute ‘current rpm’. The object of interest of this data group could be 
considered as the drive shaft or the rpm sensor. It is often the case in real-time software that 
a functional user (the RPM sensor in the example above) is also the object of interest of a data 
group that it sends (i.e. it is sending data about itself). For more on ‘The functional user as 
object of interest’ see section 3.3.5 of the Measurement Manual [1]. 

3.2.2 Data movements 

There are four sub-types of data movements: Entry, Exit, Read, and Write. 

Entry and Exit data movements move a data group across a software boundary, from or to a 
functional user respectively. Read and Write data movements move a data group from or to 
persistent storage respectively. 

For real-time software, the rules of section 3.5.9 of the Measurement Manual [1] ‘When a 
functional process requires data from a functional user’ are particularly important. Figure 3.2 
shows the various ways in which real-time software can receive or ‘get’ a data group from its 
functional users (which varies with their capabilities) and from persistent storage. 

  

Figure 3.2 - The various ways in which a functional process can receive or get data 

A data group may be present in persistent storage and be available to be read either: 

• by the data group having been made persistent by a Write data movement of an earlier 
occurrence of a software functional process, or 

• by being stored in physical read-only memory during the manufacture of a chip in which 
software will be embedded. Parameter data needed by the embedded software may be 
stored this way. 



 

Guideline for sizing real-time software, v2.0 - Copyright © 2019 15 

  

 

It may be queried why a whole Entry data movement (worth one COSMIC Function Point, or 
CFP) is measured when the signal may be a single bit, as in the case of a clock tick. But 
remembering that each data movement is assumed to account for the associated data 
manipulation, a triggering Entry must account for initializing sub-processes, not just the 
movement of one bit.  

As well as receiving or getting data groups, a functional process can, of course, also: 

• send out data groups to a functional user via an Exit data movement where no response 
is expected, 

• and can ‘put’ data groups to persistent storage via a Write data movement. 

3.2.3 Data manipulation 

The COSMIC method was not designed to account explicitly for data manipulation. As noted 
above, the method assumes that data manipulation is accounted for by each data movement.  

However, the method may be reasonably used to measure certain types of software that 
require extensive data manipulation. See section 4.5.2 of the Measurement Manual [1]. This 
is true, for example, where the software must handle high volumes of data, leading to very 
large numbers of data movement types. The latter may effectively account for any 
mathematically-complex data manipulation that may also be present. 

By 'reasonably used', we mean that the method has produced meaningful and useful sizes in 
relation to the purpose of the measurement, e.g. project performance measurement, 
estimating, benchmarking and such-like. Examples include the sizing of expert systems, 
software to digitally process continuous variables, software that collects and analyzes data 
from scientific experiments or from engineering measurements, etc. See section 4.7 of this 
Guideline for two examples of the measurement of software that includes significant data 
manipulation. 

If the software that must be measured is mostly ‘movement–rich’ but includes some significant, 
localized mathematical algorithms, the COSMIC method allows for a ‘local extension’ whereby 
an organization can define its own local scale for sizing algorithms alongside the CFP scale 
for sizing software functionality. Alternatively, if the purpose is estimating project effort, the 
measurement scope can be defined to exclude the algorithms. The sizing and estimating 
process can then be applied only to the ‘movement-rich’ functionality whilst estimating for 
developing the algorithms can be dealt with by another appropriate process. For more on this 
subject see section 4.5.5 of the Measurement Manual [1], entitled ‘Local extension with 
complex algorithms’. 

3.2.4 Error or fault messages in real-time software 

Messages containing error or fault indications in real-time software that are intended for 
hardware or software functional users (i.e. NOT for human functional users) must be analyzed 
in the same way as any other data movement. Two cases arise. 

1. ’In-line’ error message: If a data group describing a particular object of interest in a message 
issued by the software being measured may include an indication of a fault or of an error in 
place of the normal valid data, this fault/error indication describes the same object of interest 
as the normal valid data. Hence this data group is moved by only one Exit, i.e. the fault/error 
indication is not identified as a separate Exit. 

EXAMPLE: Output=  {VAL1, VAL 2, VAL3, …, VAL n, ERROR} where ‘VAL’ indicates 
a valid value.  

Here, we don’t really care about the type of the ERROR because nothing is 
implemented to handle this ERROR (e.g. LOG modules, alternative analysis modules, 
etc.)   

2. Separate error message: If the software being measured issues the reason for a fault or 
error condition as a separate message, then a separate Exit may be identified. To be 
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measured as a separate Exit, the error message must describe a different object of interest 
than the message containing the normal valid data and/or the error message must be 
intended for a different functional user than the user that would receive the normal valid 
data. (See the ‘Data Movement Uniqueness’ rules in section 3.5.7 of the Measurement 
Manual [1]). 

The general case is: 

 Output1=  {VAL1, VAL 2, VAL3, …, VAL n, ERROR}  

 Output2=  {Sensor_failure, Internal_error, General Failure, …}  

EXAMPLE: Suppose a busy airport has multiple radar stations to control incoming air 
traffic on a runway. In a particular case, the radar station software is asked to report 
the number of aircraft in the 45-135 degree quadrant around runway 09L. Two of the 
radar stations report 2 aircraft and the third radar station reports 5. The software will 
report 2 aircraft to the traffic controllers as a majority response to the request, but will 
also report a separate warning message to the controllers and to the radar engineers 
that this is a majority decision and that one station reports 5 incoming aircraft. 

The object of interest of the first message is ‘Incoming air traffic on runway 09L’.The 
object of interest of the error message could be ‘Radar station disagreement’  

 
For definitions and other examples of error messages in real-time software, see the 
Measurement Manual [1], section 3.5.11, Real-time examples 1 and 2. 
 
See also the cases in sections 4.1, 4.2, 4.3 and 4.5 of this Guideline, which all include 
messages indicating error or fault conditions that are measured as normal Exits. 

3.3 Measurement and measurement reporting 

See the Measurement Manual [1] for all principles and rules for: 

• aggregating measurement results 

• measuring the size of changes to software 

• measurement reporting 

All of these topics are domain-independent, i.e. there is nothing specific to real-time software. 
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44  
EXAMPLES 

4.1 Industry automation and the PLC 

4.1.1 The programmable logic controller (PLC) 

Programmable Logic Controllers (PLC’s) are computers with extensive input and output 
facilities that can be connected to sensors, actuators and such-like. Many industrial processes 
are controlled by PLC’s including conveyor belts and associated machinery, flat-product 
fabrication, assembly-line manufacturing and chemical processes.  

4.1.2 PLC software for controlling a process in a chemical factory 

Requirements 

A process in a chemical factory is controlled by a PLC. The process consists of filling a tank 
with a liquid, heating the liquid and then emptying the tank when a temperature is reached that 
is pre-set in the temperature sensor device. 

In the following description of the requirements of the process (system) control we assume that 
all mentioned functionalities are allocated to the PLC software, unless stated otherwise.  

• The process is started by a human operator pressing a start button connected to the PLC 
which controls all the subsequent steps. 

• The software issues a command to open the inlet valve of the tank and the tank fills with 
liquid under gravity. 

• When the tank is full (‘high level reached’ is detected by the high level sensor) the software 
receives a message from this sensor and sends commands to close the inlet valve and to 
start the heater to heat the liquid. 

• When the software is informed that the pre-set temperature is reached, it sends commands 
to stop the heater, open the outlet valve and start the pump to empty the tank.  

• The pump continues emptying until ‘low level reached’ is detected by the low level sensor. 
On receipt of a message from this sensor, the software sends a command to stop the 
pump. 

• During the entire the process, the process status (‘Filling’, ‘Heating’, ‘Pumping’) is shown 
on an operator display controlled by the software. When the process is finished, the 
software causes an audible alarm to sound and the message ‘Process finished’ is shown 
on the display. 

• When the process is started and whilst the process is running, the PLC software polls the 
valves, the heater and the pump asking for their status at regular intervals to detect any 
fault conditions. 

• If the PLC software is informed that an error is detected, it starts the audible alarm and 
displays a message to the operator showing the device(s) concerned. If an operator 
receives an error message, the operator deals with it manually, outside the software 
system. 

• The polling frequency is determined by signals (‘ticks’) from a clock. 
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Context diagram 

 

Figure 4.1 - Chemical Factory Process: PLC software Context Diagram 

Analysis 

The measurement assumes all the hardware devices that interact directly with the software 
are its functional users, as shown in the context diagram. The PLC does not have an operating 
system. 

In the requirements as described above, the software is not decomposed in any way and is 
not a component of another piece of software. The level of granularity of the requirements is 
at the ‘functional process level of granularity’, i.e. the level of individual functional users and 
events (rather than groups of these). 

There are several triggering events (events the software is required to respond to) and 
corresponding functional processes (that respond to the triggering events): 

Table 4.1 - Chemical Factory, triggering events and functional processes 

Triggering event Functional user that 
initiates the functional 

process 

 

Corresponding Functional 
process 

Start button pushed Start button Start process/Fill tank 

High level reached High level sensor Heat liquid 

Pre-set temperature reached Temperature sensor Stop heating/Empty tank 

Low level reached Low level sensor Finish process 

Clock tick (= time to poll) Clock Fault check 

Each data group moved must describe an aspect of a single object of interest. The data groups 
consist of the signals from the start button, the sensors and the clock to the software and the 
signals from the software to the actuators, valves and the devices for the operator. 

As noted in section 3.2.1, in this case the object of interest of each data group entering the 
software is the functional user that sent the group (i.e. the functional user is sending data about 
itself). Similarly the object of interest of each data group that leaves the software is the 
functional user that receives the group (i.e. the functional user is being sent data about itself). 
For instance, the data movements starting or stopping the pump move data groups that specify 
the (desired) states of the pump. The pump is therefore the object of interest of these data 
groups.  

The software determines the process status to be displayed from the triggering Entry for each 
functional process (except the Fault Check process). For instance, from the start button signal 
the software determines that the current status is 'Filling' and displays this status.  
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The functional processes of the PLC software are as follows. The data movements 
(abbreviated as DM), the data groups moved and an explanation are shown for each functional 
process. We assume that the devices that the software polls to determine their status are 
‘dumb’, i.e. the software inspects the state of these devices, which requires only one Entry per 
device type for the poll (see the Measurement Manual [1], section 3.5.9). 

Functional process: Start process/Fill tank 

DM Functional User / Object of interest Data Group 

Entry Start button Start process message 

Exit Inlet valve Open inlet valve command (to start entering 
liquid) 

Exit Clock Start clock command (for fault detection at 
regular intervals) 

Exit Display Display status command (‘Filling’) 

The size of this functional process is 4 CFP. 

Functional process: Heat liquid 

DM Functional User / Object of interest Data Group 

Entry High level sensor Tank full message 

Exit Inlet valve Close inlet valve command (to stop liquid 
entering) 

Exit Heater Start heating command 

Exit Display Display status command (‘Heating’) 

The size of this functional process is 4 CFP. 

Functional process: Stop heating/Empty tank 

DM Functional User / Object of interest Data Group 

Entry Temperature sensor Pre-set temperature reached message 

Exit Heater Stop heating command 

Exit Outlet valve Open outlet valve command 

Exit Pump Start pump command (to start emptying the 
tank) 

Exit Display Display status command (‘Pumping’) 

The size of this functional process is 5 CFP. 

Functional process: Finish process 

DM Functional User / Object of interest Data Group 

Entry Low level sensor Low level reached message 

Exit Pump Stop pump command 

Exit Outlet valve Close outlet valve command 

Exit Display Display status command (‘Finished’) 

Exit Audible alarm Sound alarm command (to inform operator) 

Exit Clock Stop clock command 

The size of this functional process is 6 CFP. 
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(For polling the devices, ‘prompt message Entries’ are assumed (see Measurement Manual 
section 3.5.9., Rule a)) 

Functional process: Fault check  

DM Functional User / Object of interest Data Group 

Entry Clock Clock tick (to start fault check process) 

Entry Inlet valve Inlet valve status  (from polling) 

Entry Outlet valve Outlet valve status (from polling) 

Entry Heater Heater status (from polling) 

Entry Pump Pump status (from polling) 

Exit Audible alarm 
Start alarm command (if device fault(s) 
detected) 

Exit Display 
Display faulty device(s) command (if there is a 
fault2) 

The size of this functional process is 7 CFP. 

The total software functional size of the PLC software is 4 + 4 + 5 + 6 + 7 = 26 CFP. 

4.1.3 Measurement of a change to the PLC software 

Requirements 

It has been decided to remove the audible alarm device and to adapt the software accordingly. 

Analysis 

The commands from the software to the alarm device can be removed, i.e. the Exit data 
movements of the audible alarm data group in the last two functional processes must be 
removed. The functional size of the change is 2 CFP. The resulting software functional size 
will be 24 CFP once the change is made. 

4.2 Timing functionality 

(See the Glossary for the definitions of ‘clock’ and ‘timer’ as used in this Guideline.) 

Measuring timing functionality requires clear specifications on what functions are allocated to 
the hardware part of the functionality, and what are specifically allocated to the software part. 

EXAMPLE 1. Timing functionality needed, for example, to control a pre-set time interval can 
be implemented in several ways, with different divisions between the hardware and 
software: 

• A hardware clock generates pulses (‘clock ticks’) at regular defined intervals each of 
which triggers a functional process of the software. The software keeps track of the 
pulses, may convert them to seconds or minutes if needed, and increments the elapsed 
time until the pre-set time is reached. 

• A hardware timer both generates and keeps track of the pulses and transforms them 
into seconds, minutes etc., in an internal register if needed. The software may start the 
timer which informs the software when the desired time is reached. This mechanism is 
used in the next Example 2. 

EXAMPLE 2.  A web-server must access a customer information system to retrieve some 
customer data. In addition to handling this request, the server starts a monitoring process 
to check that the request for customer information is handled within a set time. The aim is 

 
2 In this case, the display is shown on the context diagram as the functional user (not the human operator that reads 
the display). This Exit is therefore not an ‘error/confirmation message’, as defined in the Measurement Manual.  
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to ensure that the human user who seeks the customer information is not left hanging 
indefinitely if the customer information system fails to respond. Figure 4.2 shows a message 
sequence diagram for a simple example (no re-tries) of how this might be done via the 
interactions of the functional processes of the four participants, which are functional users 
of each other: 

• Web-server (functional user 1) 

• Customer information system (functional user 2) 

• Monitor (functional user 3) 

• Real-time Timer (functional user 4) 

The web-server, after issuing the request to the customer information system, issues 
another message to the monitor, requesting it to respond if the given time-out period is 
exceeded. If the web-server receives the data from the customer information system within 
the time-out period, it tells the monitor to stop monitoring. Otherwise, if the web-server first 
receives a reply from the monitor that the time-out period has passed, the web-server issues 
a time-out message to the functional user that requested the customer data.  

The monitor logs the request from the web-server and issues a request to the real-time 
timer, asking for a response within the given time-out period. (The timer may be 
implemented in hardware and/or software of the RTOS; it does not matter.) The monitor 
next receives either a message from the web-server to stop monitoring, or a message from 
the timer that the time-out period is complete. If the latter, the monitor sends a time-out 
message to the web-server. On completion, the monitor cancels the request from its log. 

In Figure 4.2, the data movements of the timing functionality are shown as red dashed lines. 
The functionality requires 4 CFP for the web-server to request the monitoring function, in 
addition to the 2 CFP to obtain the customer data. The monitor requires 8 CFP to fulfill its 
requirement. (The ‘delete request’ Write is counted only once, although it may be issued at 
two alternative times, depending on whether the customer data are returned within the given 
time-out period or not.) 

 

 

Figure - 4.2 The functionality for a web-server to monitor ‘time-out’  
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4.3 Intruder alarm system 

Outline statement of requirements 

This case concerns a domestic intruder (or burglar) alarm system. Its main purpose is, when 
it is activated, to start one or two sirens (devices that make a loud noise) if a sensor detects 
a movement inside the house or if the front door is opened. 

We do not have a statement of requirements, so we deduce the functionality available to 
normal house occupants and allocated to software from knowing how to use the system 
and by examining it physically. We are not interested in the functionality provided for the 
alarm maintenance engineer, nor in the functions to set-up the system when it is first 
installed. 

The software supports the alarm system’s human interface via a keypad and red/green 
LED’s. The software also accepts data from a device that can sense whether the main front 
door of the house is open or not, and from several internal movement detectors. (The alarm 
system can handle any number up to 10 movement detectors. The number does not matter 
for this analysis as they are all identical and equivalent.) The alarm system also controls an 
internal and an external siren.  

The alarm system is always powered ‘on’, but is not ‘active’, i.e. the movement detectors 
and the front door sensor are not working, unless the system is activated by the house 
occupant (the person normally resident in the house). When the system is activated, either 
the software waits in a state where it can receive signals from these sensors, or the software 
polls the sensors to obtain their state. We do not know which process is used and it does 
not matter for the functional size measurement. 

To activate and de-activate the alarm system, the house occupant must enter the correct 
PIN (Personal Identification Number) within a pre-set time. The PIN is stored by the software 
and can be changed, so there must be some persistent storage. When the first digit of a 
PIN is entered, the internal siren is started; this siren is stopped on entry of all digits of the 
correct PIN. If the wrong PIN is entered three times or if the correct PIN is not entered within 
the pre-set time, the external siren is also started. 

There is a battery to provide continuity if the mains electricity power supply fails, so there 
must be a power voltage detector. 

The green LED is illuminated when power is switch on. If a siren is started or if the mains 
power fails, the green LED is switched off and the red LED is illuminated. 

As certain functions must be completed within pre-set times, there must be a clock or timer 
mechanism. For example, if the alarm system is activated before leaving the house, the 
occupants must leave and close the front door within a pre-set number of seconds; if not, 
the sirens are started. The external siren must not continue for more than the legal limit of 
20 minutes. 

We do not know how the clock/timer is implemented but assume a software implementation 
for simplicity, which starts whenever needed. The functionality to keep track of elapsed 
times is then a form of data manipulation, which we can ignore.  

Measurement strategy parameters 

Purpose of the measurement: To measure the functional processes of the embedded 
application software available to the house occupant for normal operation. 

Measurement scope: The alarm system embedded application software functions available 
to the house occupant for normal operation. (We are not interested if there is an operating 
system) 

Functional users: A context diagram shows the hardware functional users and how they 
interact with the software. Note that the movement detectors are all functionally identical, 
so do not need to be distinguished. The human user of the alarm system, referred to as ‘the 
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occupant’ is not a functional user; he/she interacts with the application only via the keypad 
and the audible and visual signals. 

Layer: Application.   

Level of decomposition: ‘level 0’, i.e. no decomposition. 

 

Figure 4.3 – The Intruder Alarm System Context Diagram 

The functional processes: After initial set-up, the alarm system application provides the 
occupant with nine functional processes. These can be identified by considering the events 
that the software must respond to. 

1) The occupant wishes to change the existing PIN.  

2) The occupant wishes to leave the house and activate the alarm system.  

3) The front door sensor detects that the door has been opened whilst the alarm system 
is activated. 

4) The occupant wishes to activate the alarm system whilst he/she is in the house, e.g. 
when retiring at night, out of range of the movement detectors. 

5) The occupant wishes to deactivate the alarm system when inside the house, e.g. when 
getting up in the morning before moving within range of the movement detectors. 

6) A movement detector signals a movement whilst the alarm system is activated (which 
starts the internal siren). 

7) The occupant wishes to cancel the siren(s) and to deactivate the alarm system by 
entering the correct PIN following events 3) or 6). 

8) The power voltage detector signals failure of the mains electrical supply 

9) The power voltage detector signals restoration of the mains electrical power supply. 

 

Analysis of an example functional process:   

We analyze the event 3) on the list above (the front door is opened whilst the alarm system 
is activated). When the front door sensor detects this event, the internal siren starts; the 
correct PIN code must then be entered within a pre-set time to de-activate the system and 
to stop the internal siren. If the PIN code isn’t entered before the pre-set time, or the wrong 
code is entered more than three times, the external siren also starts. The functional process 
has the following data movements. 
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Functional process: Possible intruder detected. Triggering event: Door opens whilst 
alarm system is activated. 

DM Functional User / Object 
of interest 

Data Group 

Entry Front-door sensor ‘Door open’ message (triggering Entry) 

Read - / Occupant PIN (from persistent storage) 

Exit* Green LED Switch ‘off’ command 

Exit* Red LED Switch ‘on’ command 

Exit Internal siren Start noise command 

Entry Keypad PIN (If the wrong code is entered, the user may enter 
the PIN two more times but the process is always the 
same so it is only measured once.) 

** Green LED Switch ‘on’  command (after successful entry of PIN) 

** Red LED Switch ‘off’ command 

Exit Internal siren Stop noise command (after successful entry of PIN) 

Exit External siren Start noise command (after three unsuccessful PIN 
entries, or if the PIN is not entered in time) 

Exit External siren Stop noise command (after 20 minutes, a legal 
requirement) 

NOTE: : (*) The green and red LEDs are different types as they are subject to different 
functional user requirements, therefore identify two functional user types. (**) These are 
repeat occurrences of the Exits to the LED’s earlier in the process, but with different data 
values (‘on’ instead of ‘off’, and vice versa). 

The total size of this functional process is 9 CFP 

4.4 Cooker software defined as a finite state machine 

An extremely simple cooker can be set to cook for multiples of one minute, provided its door 
is closed. 

Requirements 

• When the power is switched on, the cooker software can receive input from the door and 
from a start button, and can send signals to switch an internal light, and the heater, on or 
off. The software can also send signals to a timer to set the cooking time and can receive 
a signal from the timer when cooking is complete.  

• Cooking starts with pressing the start button provided the door is closed. If the door is open 
pressing the start button has no effect. 

• Opening the door during cooking turns the heater off. 

• Whilst cooking or whilst the door is open, the cooker light is on. 

• The cooking time is set in multiples of a minute. 

• Each time the start button is pushed adds one minute to the cooking time. 

• When the timer stops, either because the door is opened whilst cooking is in progress, or 
because the timer signals that cooking is completed, the timer resets itself to zero. 

• The initialization of the cooker software is out of the scope of this case. Assume the power 
is on and the cooker is in a ‘standby’ state. 
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Context diagram 

 

Figure 4.4 – Cooker Context Diagram 

The state transition diagram of the cooker is shown in Figure 4.5. Boxes represent states and 
arrows represent the transitions from one state to another (possibly the same state). The 
events which cause the cooker to move between its states are triggering events. These are 
prefixed by ‘TE’ and the functional users that sense the events by 'FU'. 

 

Figure 4.5 – Cooker State Transition Diagram 

Analysis 

The functional users of the cooker software on the input side are the door sensor and the push 
button. On the output side the functional users are the cooker light and the heater. The 
functional user that is on both the input and the output side is the timer. As noted in section 
3.2.1, in this case the object of interest of each data group entering the software is also the 
functional user that sent the group (i.e. the functional user is sending data about itself) and 
similarly the object of interest of each data group that leaves the software is also the functional 
user that receives the group (i.e. the functional user is being sent data about itself). 

The events that actually trigger the software to start a functional process are as follows. As 
there is here a one-one correspondence between triggering events and functional processes, 
the same name is used for both. 

Table 4.2 - Cooker, triggering events and functional processes 

Triggering event Functional user that initiates 
the functional process 

Functional process 

Door closed Door sensor Door closed 

Button pushed Push button Button pushed 

Timer signal (cooking ended) Timer Timer signal (cooking ended) 

Door opened Door sensor Door opened 
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The functional processes of the cooker are as follows: 

Functional process: Door closed 

DM Functional User / Object of 
interest 

Data Group 

Entry Door sensor Door closed signal (triggering Entry) 

Exit Cooker light Switch ‘off’ command 

The size of this functional process is 2 CFP. 

Functional process: Button pushed 

DM Functional User / Object of 
interest 

Data Group 

Entry Start button Button pushed signal (triggering Entry) 

Entry Door sensor Get door status 

Exit Heater Heater ‘on’ command (if door closed) 

Exit Cooker light Light ‘on’ command (if door closed) 

Exit Timer Start or increment cooking time command (each 
push adds one minute to the cooking time if door 
is closed) 

The size of this functional process is 5 CFP. 

Functional process: Timer signal (cooking ended) 

DM Functional User / Object of 
interest 

Data Group 

Entry Timer Timing stopped signal (triggering Entry) 

Exit Heater Switch ‘off’ heater command 

Exit Cooker light Switch ‘off’ cooker light command 

The size of this functional process is 3 CFP. 

Functional process: Door opened 

DM Functional User / Object of 
interest 

Data Group 

Entry Door sensor Door open signal (triggering Entry) 

Exit Cooker light Switch ‘on’ cooker light command 

Exit Heater Switch ‘off’ heater command 

Exit Timer Stop timer command 

The size of this functional process is 4 CFP. 

The total functional size of the cooker software in the scope is 2 + 5 + 3 + 4 = 14 CFP. 

Discussion 

Note an important point about interpreting state transition diagrams. Not all state transitions 
correspond to separate functional processes. In this example there are seven state transitions 
but only four functional processes. Only events detected by or generated by a functional user 
external to the software can trigger a functional process. Each functional process must deal 
with all states and state combinations that it can encounter when responding to a given 
triggering event. 
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As an example, the triggering event ‘button pushed’ can occur when the cooker is in each of 
the three states. The event of the button being pushed takes place in the external world of the 
hardware and is entirely independent of the state of the machine. The one functional process 
that must handle the ‘button pushed’ event responds in three ways dependent on the state of 
the machine at the time the button is pushed namely: 

• In the ’standby, door open’ state, it does nothing, i.e. it stops after having found that the 
door is open; 

• In the ‘standby, door closed’ state, it sends signals to start the heater and switch on the 
light, and to start the timer for one minute of cooking; 

• In the ‘cooking state’, it executes the same data movements as in the previous state but 
since the heater has already started and the light is already on, the effect is only to add 
one minute to the total cooking time. 

In this example, we have assumed that the cooker can perform its functions by simply checking 
if the door is open or closed. In a more complex case, software may need to record the state 
of the machine and to update it in persistent storage every time the state changes. This would 
avoid the need for the software to determine the state of the machine each time a new event 
is signaled. 

Similarly, the ‘door opened’ event can occur when the machine is in two states. The one 
corresponding functional process must deal with the two states. 

4.5 Tire-pressure monitoring system 

Requirements 

• A tire-pressure monitoring system (TPMS) monitors the pressure of each of the four tires 
of a car. 

• Each wheel has a sensor which obtains the pressure of its tire. 

• As soon as the car’s electrical power supply is turned on, a clock activates the TPMS 
software once per second to retrieve the status of the four sensors, whether the car is 
moving or not. The sensors return their status, consisting of the sensor id (which identifies 
the particular wheel) and tire pressure. 

• If the pressure is too low or too high - the values are in the software - the TPMS turns on 
the relevant red warning LED(s) at the dashboard (the sensor location is therefore 
relevant). 

• If the pressure becomes normal again, the TPMS switches off the relevant red warning 
LED(s) at the dashboard. 

• The TPMS electronic control unit (ECU), the clock, the tire pressure sensors and the 
dashboard LED’s are coupled by a CAN-bus (CAN = controller–area network).  

The purpose of the measurement is to size the functionality of the TPMS. 

Context diagram 

 

Figure 4.6 – TPMS, context diagram 
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Analysis 

The four sensors are subject to the same FUR (‘obtain tire pressure’), therefore one functional 
user must be identified that represent these four occurrences: ‘Tire pressure sensor’ (short: 
Sensor). The same applies to the four LEDs (FUR: ‘turn on/off’), i.e. one functional user 
‘Dashboard LED’ (short: LED). The third functional user is the clock. 

The Sensor functional user sends the sensor ID and its value, the clock sends the clock signal, 
the LED functional user receives the LED ID and ‘on’ or ‘off’, all data that describe the functional 
user concerned. The three functional users are therefore objects of interest. 

The CAN-bus controllers form a collection of software that together provides a cohesive set of 
services that the TPMS software can use and are therefore in a software layer that is separate 
from the layer in which the TPMS software resides. The network controllers are therefore not 
in the scope of this measurement. Note that if they were within the scope of the measurement, 
they must be measured separately as the controllers are software in another layer. 

The software must respond to one triggering event, the clock signal that is sent every second, 
so consists of one functional process: 

Table 4.3 - TPMS, triggering events and functional processes 

Triggering event Functional user that initiates 
the functional process 

Functional process 

Clock signal Clock Start TPMS software 

There is no requirement to store or retrieve any persistent data. The table shows the data 
movements, the data groups moved for the functional process. Further explanation follows. 

Functional process: Start TPMS software 

DM Functional User / Object of 
interest 

Data Group 

Entry Clock Start monitoring signal (triggering Entry) 

Entry Tire pressure sensor Obtain tire pressure  

Exit Warning LED Switch ‘on/off’ LED (if needed) 

The size of this functional process is 3 CFP. 

This simple case illustrates an important aspect of many real-time systems that have multiple 
occurrences of sensors or output devices. Examples would be multiple sensors (all with or 
without IDs) distributed across a sheet of material passing through a set of rollers controlled 
by a process control system. Where such sensors (or output display devices) are subject to 
the same FUR, identify one functional user for the occurrences of the sensors or devices. 

4.6 Automation of sizing real-time requirements  

Automation of the measurement of requirements for real-time embedded software of vehicle 
Electronic Control Units modeled with the Matlab Simulink tool is described in [7][7] and in the 
PhD thesis of Hassan Soubra [8]. A concise English description of the method, copyright 
Renault, is available from the download section of www.cosmic-sizing.org [9]. 

Automation of the measurement of requirements expressed in UML (not specifically of real-
time software) is described in [10].  

4.7 Measurement of data manipulation-rich real-time software 

An example in this section illustrates that the assumption is reasonable that data manipulation 
functionality (or ‘algorithms’) of real-time software can be accounted for by the COSMIC 
method. The example does not, of course, prove that the assumption is always reasonable. 

http://www.cosmic-sizing.org/
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For ways in which to deal with software for which it is known that certain areas of the 
functionality have a high concentration of data manipulation, see section 3.2.3 of this 
Guideline. 

The distribution of algorithms in some avionics software 

A large component of the software of a very complex real-time avionics system was measured 
using the COSMIC method [11][11]. The total size of the requirements (held in a modelling 
tool) for the component was over 8000 CFP. Implementation required over 80,000 lines of 
source code in the Ada language. 

This one system component consisted of 33 sub-components. Within each sub-component, 
the number of lines of Ada code associated with each data movement was also counted. This 
is known as the ‘NOLA’, for ‘number of lines of algorithm’. Hence the ‘NOLA per Data 
Movement’ could be calculated for each of the 8000+ data movements. 

Figure 4.8 shows a histogram of the frequency of the ‘NOLA per Data Movement’, for all except 
five of the data movements. The five data movements with exceptionally high NOLA had 28 
(x2), 36, 40 and 138 NOLA. (Example: the histogram shows that 20 of the 8000+ data 
movements had seven NOLA.) 

 

Figure 4.8 - Frequency of NOLA per Data Movement’ [11] 

The following parameters were derived from these data: 

Parameter Value 

Median NOLA per Data Movement 2.4 

Mean average NOLA per Data Movement 3.5 

Data Movement upper size limit which accounts 
for 95% of the total NOLA 

8 CFP 

Data Movement upper size limit which accounts 
for 99% of the total NOLA 

14 CFP 

The data and the analysis indicate that the NOLA per Data Movement values have a limited 
range, apart from a very few exceptions. This finding supports the COSMIC method 
assumption that a count of data movements reflects the amount of data manipulation and thus 
is a good reflection of the functional size, at least for this particular piece of real-time software. 

4.8 Sizing the memory requirements of vehicle Electronic Control Units 

A paper entitled ‘ On the Conversion between the Sizes of Software Products in the Life Cycle’ 
by C. Gencel, R. Heldal and K. Lind, presented at the International Workshop on Software 
Measurement in Stuttgart, November 2010, describes the application of the COSMIC method 
to size the software embedded in Electronic Control Units of Saab cars, manufactured in 
Sweden.  The purpose of the study was to examine the relationship between the COSMIC-
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measured functional size and the resulting memory space needed by the object code, 
measured in bytes.  An extremely good linear correlation was found. 

In the paper, the authors state: ‘This paper shows that it is possible to obtain accurate code 
size estimates even for software components containing complex calculations, as long as the 
components contain similar complexity proportional to the number of component interfaces.’ 

Renault [12] also reported a good correlation of code size in bytes versus COSMIC-measured 
functional size in units of CFP, as in the graph below. 

 

Figure 4.9. Code size (bytes) versus COSMIC functional size (CFP) [12] 
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GGlloossssaarryy  

REAL-TIME DOMAIN GLOSSARY 

Actuator.  A device that converts an electrical signal to a mechanical movement. 

Clock: (as used in this Guideline) A hardware device that generates a stream of pulses at 
constant frequency. 

Control.  Directing or guiding 

Dumb device.  Any type of device that sends its data automatically on receipt of a prompt 
message. 

NOTE: For measurement purposes, an Entry data movement to the software needing the data 
suffices to obtain the data from a dumb device. 

Intelligent device.  Any type of device that must be told explicitly what data is required in order 
for it to produce the required output data. 

NOTE: For measurement purposes, an Exit data movement from the software specifying the 
required data is received by an intelligent device as an Entry. The device issues an Exit 
conveying the requested data which is received by the requesting software as an Entry. 

Monitor. Keeping a check on something 

Sensor. A device that converts a physical signal to an electrical signal that is made available 
to the software in the form of a data group. 

Timer: (as used in this Guideline) A hardware device or software process that can measure a 
time duration. 
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2 Version Control 

The following table gives the history of the versions of this document. 

 

DATE REVIEWER(S) Modifications / Additions 

June 2012 COSMIC Measurement 
Practices Committee  

First version 1.0 issued 

April 2015 COSMIC Measurement 
Practices Committee 

Version 1.1 brought in line with the Measurement Manual 
v4.0.1. See Appendix A for changes made 

November 2016 COSMIC Measurement 
Practices Committee 

Version 1.1.1 has various improvements for ease of 
understanding. See Appendix A for changes made. 

November 2018 COSMIC Measurement 
Practices Committee 

Version 1.1.2 has a few changes to comply with the 
Measurement Manual v4.0.2, further only minor changes 
were needed. See Appendix 3 for changes made. 

November 2019 COSMIC Measurement 
Practices Committee 

Non-essential sections removed. Change History of 
previous versions moved to a separate document, to be 
stored in cosmic-sizing. 

3 Guideline Change History 

This section contains a summary of the principal changes made in the evolution of this 
‘Guideline for sizing real-time software’ from version 1.1.2 to the version 2.0. 

 

V2.0 Ref Change from version 1.1.2 to version 2.0 

General The Guideline Change History has been limited to the changes that have been 
made from the previous version 1.1.2. Changes to older versions have been 
moved to a separate document that will be added shortly to the Knowledge 
base of cosmic-sizing. 

Some minor editorial changes have been made to increase readability. 

1.2.2, 
1.2.3, 
1.2.4, 
1.2.5, 
1.2.6 

These sections on the requirements in the EARS syntax, requirements for a 
finite state machine, requirements for a programmable logic controller, 
requirements in specialized tools, requirements in UML and on non-functional 
requirements have been removed as not being essential. 
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1.2.7 A large part of this section on non-functional requirements repeated text of the  
Guideline on Non-Functional & Project Requirements and is removed, the 
remaining text becoming section 1.2.2. 

4.3 The red and green LEDs are different functional user types, explanation added 
to the Intruder alarm system example. 

Reference 

section 

Updated to remove documents referred to in the deleted sections above 

4 Change requests, comments, questions 

Where the reader believes there is a defect in the text, a need for clarification, or that some 

text needs enhancing, please send an email to: mpc-chair@cosmic-sizing.org 
You can use the forum on cosmic-sizing.org/forums to post your questions and receive 
answers from our world-wide community. The quality of any answers will depend on the 
knowledge and experience of the community member that writes the answer; the MPC cannot 
guarantee the correctness. Commercial organizations exist that can provide training and 
consultancy or tool support for the method.  Please consult the www.cosmic-sizing.org web-
site for further detail. 
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