

TThhee CCOOSSMMIICC FFuunnccttiioonnaall SSiizzee MMeeaassuurreemmeenntt MMeetthhoodd

VVeerrssiioonn 44..00..22

IInnttrroodduuccttiioonn ttoo tthhee CCOOSSMMIICC

mmeetthhoodd ooff mmeeaassuurriinngg ssooffttwwaarree

Version 1.2

September 2019

Copyright 2019. All Rights Reserved. The Common Software Measurement International Consortium (COSMIC).
Permission to copy all or part of this material is granted provided that the copies are not made or distributed for
commercial advantage and that the title of the publication, its version number, and its date are cited and notice is
given that copying is by permission of the Common Software Measurement International Consortium (COSMIC).
To copy otherwise requires specific permission.

Public domain versions of the COSMIC documentation, including translations into other languages can be found
on the Web at www.cosmic-sizing.org.

http://www.cosmic-sizing.org/

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 2

FFoorreewwoorrdd

The COSMIC method is an internationally standardized method (ISO 19761, see [1]) for
measuring the size of the functional requirements of most software domains, including
business application (or ‘management information system’) software, real-time software,
infrastructure software and some types of scientific/engineering software.

 ‘COSMIC’ stands for the ‘Common Software Measurement International Consortium’. It was
formed in 1998 by a group of software measurement experts from Australia, Europe and
North America with the aim of developing a new method of measuring software size based
on well-established software engineering principles and metrology criteria. Its publications
are completely open and available for free download.

The method is very widely used around the world, in all the domains for which it was
designed, for purposes such as the measurement of sizes in software contracts, and is
successfully applied for project performance measurement, benchmarking and estimating.

Aims of this ‘Introduction’ document

This document is aimed at people who need an introduction to software size measurement
and its uses, and who want an overview of the COSMIC method, but not all of its details.

Use the diagram below to decide which chapters to read.

Would you like ...

... just a 2-page

overview of the

COSMIC method?

(You already know

something about

software size

measurement.)

... an introduction to

the ‘why’ and ‘how’ of

software size

measurement

& some background

on why the COSMIC

method was

developed?

... a more detailed

introduction to

the COSMIC

method?

(But for the full

details, see the

‘Measurement

Manual’)

Read Chapter 4 Read Chapters 5 to 7Read Chapters 1 to 3

For Advantages & Benefits of the COSMIC method

Read Chapter 8

COSMIC method documentation

All COSMIC method documentation except the ISO 19761 standard can be downloaded from
the Knowledge Base of the COSMIC website www.cosmic-sizing.org.

The principal documents that define the method are:

• The ISO 19761 standard (‘Software Engineering – COSMIC – A functional size
measurement method’), which contains the definitions and basic rules of the method. (At
the time of writing, the 2012 version of this standard has not yet been updated to v4.0.1
of method.)

• The COSMIC Method version 4.0.2: Measurement Manual, which provides all the
principles and rules and the glossary of terms. It also provides further explanation and

http://www.cosmic-sizing.org/

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 3

many more examples in order to help measurers to understand and to apply the method.
This is the main ‘working document’ that Measurers will need in practice.

The table below shows the structure of COSMIC documentation. At the time of publication of
this Introduction, most of these documents are available; an asterisk indicates the document
is still under development.

Overviews Introduction to the COSMIC method, Quick Reference Guides,

What is a COSMIC Function Point? Software Development Velocity with
COSMIC Function Points

Standards ISO 19671 Standard, Measurement Manual 4.0.2

Guidelines Domain-specific: Real-time, Business, Data Warehouse, SOA, mobile
applications*, etc.

Development method specific: Agile, etc.

Measurement support: Measurement Accuracy, Measurement
Patterns, Approximate Measurement, Conversion of first-generation
function point sizes to COSMIC sizes, Non-Functional & Project
Requirements, etc.

Case Studies Real-time, Business, Web Applications, SOA, Robotics, Neural Network
Machine Learning*, etc.

Translations of the ‘Measurement Manual’ are also available in several languages in addition
to English. All these can be found on the COSMIC website www.cosmic-sizing.org.

This same website has more general background information on functional size
measurement and its uses, on the COSMIC organization and its activities, on suppliers of
COSMIC-related services, COSMIC certification examinations, COSMIC Newsletters, how to
contribute to and get COSMIC benchmark data, etc., as well as measurement support tools
and many COSMIC-related research papers, all for free download.

The COSMIC Measurement Practices Committee

September 2019

http://www.cosmic-sizing.org/

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 4

TTaabbllee ooff ccoonntteennttss

1 WHY MEASURE SOFTWARE SIZE? ... 6

1.1 Why would anyone want to ‘measure’ software? .. 6

1.2 Software size measurements have many other uses ... 6

1.3 Who typically benefits from these measurements? .. 7

2 HOW TO MEASURE SOFTWARE SIZE?... 8

2.1 Like any other unit of measurement, you need standards .. 8

2.2 What are the most important ways of measuring software size? ... 8

2.3 Counting source lines of code ... 8

2.4 Measuring software requirements ... 9

2.5 Other ways of measuring software size .. 9

2.6 A closer look at software requirements – FUR and NFR .. 9

2.7 Skills needed for COSMIC Measurers .. 10

3 A BRIEF HISTORY OF FUNCTIONAL SIZE MEASUREMENT ...11

3.1 How did it all start? .. 11

3.2 The International Organization for Standardization (ISO) steps in ... 11

3.3 COSMIC gets going .. 11

3.4 ISO’s final word: ‘Let the market decide’ ... 12

4 A VERY BRIEF OVERVIEW OF THE COSMIC METHOD ...13

4.1 Applicability of the method .. 13

4.2 The three phases of the COSMIC functional size measurement process 13

4.3 Phase 1: Measurement Strategy ... 13

4.4 Phase 2: Mapping ... 14

4.5 Phase 3: Measurement ... 14

5 COSMIC METHOD - THE MEASUREMENT STRATEGY PHASE ..16

5.1 Why do we need a ‘strategy’? ... 16

5.2 The five key strategy parameters to be determined .. 16

5.3 Software ‘layers’ .. 17

5.4 Examples of how the ‘purpose’ of a measurement affects the other measurement strategy
parameters .. 17

5.5 What else should you think about before starting to measure? .. 19

6 COSMIC METHOD - THE MAPPING PHASE ..20

6.1 The Generic Software Model .. 20

6.2 A key relationship: events / functional users / functional processes ... 21

6.3 The structure of FUR and of functional processes .. 22

6.4 Accounting for data manipulation .. 23

6.5 The four types of data movements .. 23

6.6 Persistent storage ... 24

6.7 A data movement moves a single data group describing one object of Interest 24

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 5

6.8 The Mapping phase process ... 25

6.9 Some simple examples of Mapping .. 25

6.10 Some general lessons from these examples .. 31

7 COSMIC METHOD - THE MEASUREMENT PHASE ...33

7.1 The COSMIC measurement principle ... 33

7.2 Size aggregation ... 33

7.3 Size of required changes .. 34

8 ADVANTAGES AND BENEFITS OF THE COSMIC METHOD ..35

9 REFERENCES ...37

APPENDICES ... 38

A.1 ACKNOWLEDGEMENTS ... 38

A.2 VERSION CONTROL ... 38

A.3 GUIDELINE CHANGE HISTORY ... 39

A.3.1 Main changes from version 1.1 to 1.2 .. 39

A.3.2 Main changes from version 1.0 to 1.1 .. 39

A.4 CHANGE REQUESTS, COMMENTS, QUESTIONS ... 40

-

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 6

11
WHY MEASURE SOFTWARE SIZE?

1.1 Why would anyone want to ‘measure’ software?

The most likely reason to measure a size of some software is if you need to estimate the
effort for its development. Your first thought may then be ‘how big is the software?’ The
software size is usually the main driver of the amount of the development work that must be
done.

Analogy: If you ask a supplier to estimate the effort for a job such as tiling the walls of a
bathroom, the supplier will first want to know the surface area of the walls (i.e. the size) to be
tiled. Then, knowing the normal rate at which tiles of the required size can be fixed in, say,
tiles per hour (which we call ‘productivity’) the supplier can give a first estimate of the effort.
The starting point for such an estimate is always:

Estimated Effort = Estimated Size divided by Productivity.

This initial estimate might need to be refined due to unusual corners or windows in the
bathroom, but the main ‘cost driver’ for the effort is the area (= estimated size) to be tiled.

The estimation process is similar when estimating effort to develop or change some
software. We will need to measure or estimate the size of the software to be developed or
changed. Productivity data of software development projects that used technology similar to
what will be used for the new software can be obtained

• from measurements of productivity of completed projects within your own organization,

• from sources of benchmark data such as the publicly-available ISBSG industry database
at www.isbsg.org.

(By the way, be careful to distinguish ‘software size’, the topic of this Introduction, from
‘project size’. A project may include other activities than developing software; project size is
measured in units of effort such as ‘work-hours’, or staffing level, or duration.)

1.2 Software size measurements have many other uses

Measuring software sizes can be very valuable for many other purposes than project
estimating. For example:

• Comparison. An organization may wish to compare productivity using an Agile approach
to project management versus its traditional ‘waterfall’ approach. For this you must use
the same method of measuring the software produced by all types of projects.

• Controlling scope, budget and progress. Tracking the size of a new piece of software
as its requirements evolve helps project managers to control ‘scope creep’ and hence the
project budget, and to control progress against budget.

• Controlling defect density. When a project is completed, you may want to track defects
found in the first month of operation and report, say, the ‘defect density’ in defects per
unit size.

See chapter 8 for more uses of software size measurement.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 7

1.3 Who typically benefits from these measurements?

Major commercial software suppliers routinely measure software sizes and use them for new
project effort estimating and for project productivity measurement. Their measurements are
vital for managing risk and maintaining profitability:

• Software customers should benefit even more from using these measurements to control
scope creep and their suppliers’ price/performance, delivered quality, etc.

• Project managers may estimate the effort of their projects on basis of software size, or
use effort estimates to compare with their own effort estimates.

• Management may use effort estimates to compare with supplier’s offers, or to assess a
project manager’s estimate.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 8

22
HOW TO MEASURE SOFTWARE SIZE?

2.1 Like any other unit of measurement, you need standards

The size of software can be measured in many ways and at different points in a software
project life-cycle.

If you want to use software size measurements for multiple purposes across multiple
activities, it is evident that you must adopt a standard way of measuring software size. The
COSMIC method is an example of an internationally standardized Functional Size
Measurement method (FSM), having been accepted as the International Standard ISO
19761.

2.2 What are the most important ways of measuring software size?

There are three main ways of measuring software size.

• You can count the source lines of code (SLOC) written to implement the software
requirements.

• You can measure the size of the requirements for software.

• You can use a method related to the software development method or stage.

2.3 Counting source lines of code

Counting SLOC was one of the earliest ways of measuring software size. The advantage of
SLOC sizes is that SLOC can be counted automatically by programs that analyze the source
code. But SLOC counts have significant disadvantages.

• There are no universally accepted standards for SLOC counting, counts may vary from
one automatic counting program to another program.

• When a given set of software requirements is programmed, the numbers of SLOC will
depend on the programming language used and maybe the skill of the programmer.
Comparisons of productivity across projects, especially when using different
programming languages, are therefore inherently difficult.

• You only know a SLOC size precisely when the software programs are finished. So it’s
difficult to use SLOC counts for estimating effort early in the life of a project. To estimate
a size in SLOC, the project must have progressed to a point where you have some
knowledge of the design and program structure and then you will need some experienced
guesswork or analogies for the SLOC estimate.

• Source lines of code may not be identifiable with some programming languages and
tools, which are based on selecting and setting parameters and options.

Nevertheless, SLOC counts are still used when the physical size of the software is relevant
and in some software domains which have built up years of experience of using these
measures. Also, several well-known software project estimating methods, e.g. COCOMO II
[2], have been calibrated using SLOC sizes.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 9

2.4 Measuring software requirements

Methods for measuring software functional requirements, known as ‘Functional Size
Measurement’ (or ‘FSM’) methods, one of which is COSMIC, have the obvious advantage for
project estimating that they can be used as soon as the ‘functional user requirements’ (FUR)
are known. Most FSM methods also have variants that can be used for approximate sizing
even before the FUR are known in full detail.

The other big advantage of FSM methods is that the sizes they measure are independent of
the technology used to implement the software. In addition, for some of the FSM methods,
their units of measurement are internationally standardized. FSM method measurement units
are the closest equivalent that the software industry has to standard units (such as the meter
for measuring length).

2.5 Other ways of measuring software size

There are many other methods of measuring software size, but they are almost all related to
specific development methods or to measuring size at a particular stage in the development.

Examples include the ‘Use Case Points’ of UML, ‘User Story Points’ of Agile methods,
’Object Points’ of Object-Oriented methods, and so on. None of these methods are well
defined and supported by international users groups, or are portable across different
development methods. None have been internationally standardized. Some, such as User
Story Points, are actually highly subjective.

2.6 A closer look at software requirements – FUR and NFR

A closer look at software requirements shows that there are two types of software
requirements, namely ‘functional user requirements’ (or ‘FUR’) and ‘non-functional
requirements’ (or ‘NFR’). In very simple terms:

• FUR state what the software must do for its users, in terms of tasks and services (ISO
14143-1);

• NFR are typically constraints that apply to the whole hardware/software system.

The following example illustrates both FUR and NFR

BUSINESS EXAMPLE: Assume a company’s Personnel System.

• The FUR would specify that it must enable the entry and maintenance of all data about
the company’s employees including their name and address, date of birth and start of
employment, grade, job title, department, qualifications, dependents, career
progression and appraisal record, etc. The software must also provide enquiries
against the stored data.

• NFR for this same Personnel System might specify: security-access controls, system
availability, the technology to be used for the software, a target response time and
such-like.

REAL-TIME EXAMPLE: Assume the embedded software that controls the functions of a
simple copier.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 10

• Its FUR would specify that it must support all user commands, e.g. initializing the
system after power-on, responding to the user entering the number of required copies,
the selection of black or colored copying, magnification, etc., and then controlling all
the steps to produce the copies after the user presses the ‘start’ button. The software
must also respond to sensors signaling that there is a paper jam, paper or ink has run
out, etc.

• NFR for the copier might specify: system timing constraints, a zero-defect target for
the software, system availability criteria, etc.

Note that many systems requirements that initially appear as non-functional evolve into
software functional requirements as a project evolves.

EXAMPLE: Systems requirements for auditability or usability may appear early in a project as non-
functional but, as the project progresses, will be translated into requirements for software
functionality that can be measured by the COSMIC method in the same way as any other FUR.

A ‘Guideline on Non-functional and Project requirements’ advises on how to consider these
types of requirements in software project performance measurement, benchmarking and
estimating [13].

2.7 Skills needed for COSMIC Measurers

To use the COSMIC method to measure sizes accurately, the skills needed are those of any
requirements engineer or systems analyst. To use the results of COSMIC size
measurements for project performance comparisons, development of benchmarks and
estimating, it is highly desirable to have a basic knowledge of statistical methods.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 11

33
A BRIEF HISTORY OF FUNCTIONAL SIZE MEASUREMENT

This chapter describes why and how the COSMIC method was developed.

3.1 How did it all start?

In the mid 1970’s, Allan Albrecht of IBM was tasked with measuring the productivity of
software projects in a part of IBM that was starting to use multiple programming languages.
Given the disadvantages of using SLOC as a measure of the size of delivered software, he
had the clever idea of developing a size of the software requirements which would be
independent of the technology used.

Albrecht’s method was first published in 1979 (see [3]) and became known as ‘Function Point
Analysis - FPA’. Management of the development of the method was taken over by the
International Function Point Users Group and the method has become known as ‘IFPUG
FPA’.

Although the IFPUG method is probably still the most widely used FSM method in the
domain of business application software, the method has several weaknesses, of which the
following are the most important:

• It has become increasingly difficult to map Albrecht’s function types to modern ways of
modeling software requirements. This applies especially to areas where software is
constructed as services, and in the domains of real-time and infrastructure software.

• The function types that it considers can be given only a very restricted range of sizes
which means the method is insensitive to the extremes of size that exist in real software.
A measurement scale should normally be linear and open-ended.

3.2 The International Organization for Standardization (ISO) steps in

By around 1990, there was demand for an ISO standard FSM method. But there was no
agreement that any of the then-existing methods (the IFPUG method and others) were
suitable candidates. ISO therefore established a working group1 to study and define the
principles of FSM. A first version of the resulting standard, ISO 14143/1 (see [4]), was
published in 1998.

The new principles helped improve the understanding of FSM, but did not solve the problem
of dissatisfaction with existing methods. The market needed a new FSM method.

3.3 COSMIC gets going

ISO procedures are designed to obtain agreement on standards from existing knowledge,
but not for developing new ideas. An informal group of software measurement experts from
Australia, Europe and North America, therefore decided in late 1998 to embark on

1 ISO JTC1/SC7/WG12

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 12

developing a ‘second generation’ FSM method based on the principles of ISO 14143/1. The
group called itself ‘COSMIC’, the Common Software Measurement International Consortium.

COSMIC’s objectives

The COSMIC group’s objectives were to develop and gain market acceptance
for a method of measuring the functional user requirements for software based
on fundamental software engineering principles and conformant to measurement
theory, to be applicable for measuring business, real-time and infrastructure
software.

COSMIC is still an entirely voluntary, international group of software measurement experts,
from industry and academia.

COSMIC continues to refine the definition and explanation of the method in light of practical
experience, though it must be emphasized that the basic principles of the size
measurement have not changed since the method was first published in 1999.

3.4 ISO’s final word: ‘Let the market decide’

In the early 2000’s at the ISO level, there was still no international standard FSM Method and
no agreement that any existing method could be accepted as such. Finally therefore, ISO
agreed to a policy of ‘let the market decide’. So there are now five ISO FSM standard
methods (IFPUG, COSMIC and three others) for you to choose from.

The COSMIC method ISO standard (ISO 19761) was first published in early 2003. The latest
version of this standard can be obtained from www.iso.org.

http://www.iso.org/

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 13

44
A VERY BRIEF OVERVIEW OF THE COSMIC METHOD

The aim of this chapter is to give a first, very high-level overview of the COSMIC method.

The first use of COSMIC method keywords in any chapter is given in bold. For the formal
definition of keywords, see the glossary of the Measurement Manual [5].

4.1 Applicability of the method

The COSMIC method was designed to measure the Functional User Requirements (FUR)
of business application (or ‘management information system’) [8], real-time and infrastructure
software and some types of scientific/engineering software, in any layer of a software
architecture, and at any level of decomposition of the software.

4.2 The three phases of the COSMIC functional size measurement process

The COSMIC measurement process is shown in Figure 4.1. The three phases are explained
in the next sections.

Figure 4.1 - The COSMIC measurement process

4.3 Phase 1: Measurement Strategy

We must first define what will be measured. The size of a piece of software depends on the
viewpoint of who or what we define as its functional users, i.e. the humans, hardware
devices or other software that interact with the software. In order to measure the size of the
piece of software, we must therefore first agree on the purpose of the measurement, which
leads to defining its scope (the extent of the software’s FUR to be measured) and its
functional users, and then usually some other parameters2.

It’s essential to document the parameters of the measurement strategy so that the resulting
measurement(s) will be correctly interpreted by all future users.

2 The principles underlying the parameters needed for the measurement strategy are all defined in the COSMIC ‘Software
Context Model’. This model is not described in this Introduction. See the Measurement Manual.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 14

4.4 Phase 2: Mapping

The task of the Mapping phase is to create the COSMIC model of the FUR, starting from
whatever artefacts of the software are available, e.g. an outline or detailed statement of
requirements, design models, the installed physical software, etc. To create the model, we
apply the principles of the COSMIC Generic Software Model to the FUR to be measured.

This model of the FUR of software rests on four main principles:

1. Software functionality consists of functional processes. The task of each functional
process is to respond to an event that has happened in the world of the software’s
functional users.

2. Functional processes consist of sub-processes. These do only two things: they move and
they manipulate data. Data movement sub-processes that move data from functional
users into a functional process and that move data out to them are called Entries and
Exits respectively. Data movement sub-processes that move data to and from
persistent storage are called Writes and Reads respectively. Figure 4.2 illustrates the
four types of data movements.

Figure 4.2 - The four types of data movements

3. Each data movement (Entry, Exit, Read or Write) moves a single data group whose
attributes3 describe a single ‘thing’ (an object of interest).

4. Data manipulation sub-processes are assumed to be accounted for by the data
movement with which they are associated. Data manipulation is not measured
separately.

A functional process finishes executing when it has done all that it is required to do to
respond to the data it received about the event.

4.5 Phase 3: Measurement

The COSMIC method measurement unit is the ‘Cosmic Function Point’ (CFP). Each data
movement is measured as 1 CFP.

In the Measurement phase, we measure the size of a new piece of software by identifying all
the data movements (Entries, Exits, Reads and Writes) of each functional process and sum
these over all its functional processes.

3 Known as ‘Data Element Types’ or ‘DETs’ in some other FSM Methods.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 15

A functional process must have at least two data movements (an Entry plus either an Exit or
a Write) in order to provide a minimal but complete service. Hence the minimum size of a
functional process is 2 CFP. There is no upper limit to the size of a functional process.

To measure an enhancement to existing software, we identify all the data movements to be
added, changed and deleted, and sum these over all its functional processes. The minimum
size of any modification to a functional process is 1 CFP.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 16

55
COSMIC METHOD - THE MEASUREMENT STRATEGY PHASE

A COSMIC functional size measurement should follow a three phase process. In the first
Measurement Strategy phase, the Measurer must agree with whoever needs the
measurement (the ‘sponsor’) the purpose of the measurement and usually some other
parameters that all depend on the purpose.

In this and subsequent chapters, the first use of a COSMIC keyword in each chapter is given
in bold. Formal definitions of the keywords are given in the glossary of the Measurement
Manual (‘MM’) which gives all the principles and rules of the COSMIC method, with many
examples [5]. This Introduction only has informal definitions.

5.1 Why do we need a ‘strategy’?

You need to agree and document the purpose of the measurement and various other
parameters with the measurement sponsor so that in the future everyone will understand the
measured size and how it may be used.

In practice, you will find that only a few recurrent ‘patterns’ of parameters will be needed for
the different types of software you will have to measure in your organization. To help you, a
‘COSMIC Guideline for Measurement Strategy Patterns’ [6] defines some of the most
common patterns and their uses.

5.2 The five key strategy parameters to be determined

• The purpose of the measurement. The purpose helps determine all the following
parameters.

• The scope of the piece(s) of software to be measured. A project might have to deliver
several pieces of software, or the functionality to be measured might be restricted in
some way. What’s included in the functionality and what’s excluded?

• The level of decomposition of the piece(s) of software to be measured. Different levels
would be, for example, a ‘whole application’ (‘level 0’), or one of the primary components
of a distributed system (‘level 1’), or a re-usable component in a SOA architecture (‘level
2’).

• The functional users of each piece of software to be measured. These are the humans
or ‘things’ (hardware devices or other pieces of software) that are the intended senders or
recipients of data to/from the software being measured. It is the functionality they ‘see’,
that you will measure;

• The layer(s) of the software architecture in which the software resides. A piece of
software to be measured must be confined to one layer.

By documenting these parameters for each measured size, you will help ensure that in the
future the sizes will only be compared and used on a ‘like-for-like’ basis.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 17

5.3 Software ‘layers’

Most of the measurement strategy parameters are easy to understand. But the term ‘layer’ is
used in various ways in the software industry. {Sometimes ‘n-tier’ is used instead of ‘n-layer’.)
Figure 5.1 shows a typical computer systems ‘layered architecture’ that supports business
application software.

Middleware Layer (Utilities, etc)

Operating System Layer

Keyboard

Driver

Screen

Driver

VDU

Screen
KeyboardHardware

Software

Layers

Disk

Driver

Hard Disk

Drive

Print

Driver

Printer
Central

Processor

Database Management

System Layer
DBMS 1 DBMS 2

App 1Application Layer App 2 App ‘n’

Figure 5.1 - Typical layered software architecture for a business/MIS computer system

Figure 5.2 shows that the Application Layer in Figure 5.1 may be sub-divided into other
layers, dependent on the ‘view’ of the software architect (and consequently of the functional
users of the software to be measured, as we shall see).

A
Application

‘A’

Application Layer

UI Layer

BR Layer

DS Layer

User

Interface
Component

Business

Rules
Component

Data

Services
Component

c) Layers for SOA

components of
Business Rules

Application Layer

Orchestration Layer

Utility Layer

b) Application ‘A’

components in a
3-layer Architecture

a) View of an

application ‘A’ as a
whole

Figure 5.2 - Three views of a piece of application software

5.4 Examples of how the ‘purpose’ of a measurement affects the other measurement
strategy parameters

BUSINESS EXAMPLE: Suppose the software to be developed and measured is a
distributed 3-layer business application system. The context is a contract with a supplier
that stipulates that for payment purposes, software sizes will be measured at the level of
whole applications, ignoring any component structure.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 18

Case 1.

Purpose: to measure the size of a delivered application for contract payment

Scope: The FUR of the one application

Functional users: Human users and any other interfacing applications

Level of decomposition: None (‘level 0’)

Layer: Application, i.e. view a) as in Figure 5.2

Case 2.

Purpose: to measure the size of each major component of the distributed application so
that the supplier can estimate the project effort, because each component will be
developed using a different technology.

Scope: Each component is measured separately (i.e. there are three measurement
scopes).

Functional Users: Refer to the three layers as in Figure 5.2 View b)

The User Interface component has the Human users and the Business Rules component
as its functional users

The Business Rules component has the User Interface and the Data Services
components as its functional users

The Data Services component has the Business Rules component and any other
interfacing applications as its functional users.

Level of Decomposition: First-level decomposition of an application (‘level 1’)

Layers: See the three layers as in Figure 5.2 View b)

REAL-TIME EXAMPLE: The functionality of the software embedded in a hardware device
used by humans, for example a combined computer printer/copier can be measured from
the viewpoints of two types of functional users. (In both cases assume that we are not
interested in any component structure of the software nor any firmware that the embedded
software may use.)

Case 1.

Purpose: to measure the size of functionality available to the human user (the ‘consumer
offering’ for Marketing), so as to compare against the offering of competitive products.

Scope: Functionality available to human operator users (i.e. excluding functionality
needed by operators over which they have no control or cannot ‘see’, such as some
functions needed by the printer to communicate with a computer)

Functional Users: Human operator users

Case 2.

Purpose: to measure the functionality that the embedded software developer must provide
for the device to function

Scope: All the functionality of the embedded software

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 19

Functional users: All hardware devices with which the software must interact (e.g.
keyboard, control buttons, screens, print drive mechanism, paper transport mechanism,
etc., any computer that the printer must communicate with and the printer driver software).

 5.5 What else should you think about before starting to measure?

It’s very important to agree what artefacts of the software are available that can be used to
determine the FUR to be measured. In practice the available artefacts may not supply
exactly the information needed for any FSM measurement, so the Measurer usually has to
make some assumptions when deriving the FUR. It is best to consult an expert in the
requirements of the software to be measured to help with understanding the software so that
the measurement is as accurate as possible.

Some examples of the problems typically faced:

• If a size measurement is needed early in the life of a project, the requirements may not
yet have been documented in the detail needed for an accurate COSMIC measurement.
For these situations, we have a Guideline [7] that describes variants of the standard
COSMIC method that can be used to measure an approximate size;

• Sometimes software requirements are defined at a ‘high-level’ and then defined at
increasingly detailed ‘lower’ levels. We call these levels of granularity. To ensure
comparability, sizes must be measured at the standard level of granularity of ‘functional
processes’ (see further below). If necessary, a variant for approximate size measurement
can be used to scale from a size measured at a higher level of granularity to the standard
level;

• Sometimes a size must be measured of an installed system for which the requirements
no longer exist. In these situations, the Measurer will need to ‘reverse engineer’ from the
available artefacts, e.g. screens, user documentation, reports, user interfaces, etc. to
determine the FUR.

Several COSMIC Guidelines describe how to derive or analyze FUR for different types of
software or development methods. They are all available from www.cosmic-sizing.org..

Finally, a Measurer may be asked to estimate how long it will take to measure a particular
piece of software. The average speed of measurement using the COSMIC method is similar
to that for other standard FSM methods. But the actual rate can vary about this average
greatly. The effort needed for a measurement will tend to increase:

• the worse the quality of the artefacts available for measurement;

• the greater the accuracy of the measurement required by the measurement sponsor and
the level of detail of the measurement to be documented;

• the less-experienced the Measurer is in the type of software to be measured and in the
COSMIC method.

http://www.cosmic-sizing.org/

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 20

66
COSMIC METHOD - THE MAPPING PHASE

The task of the Mapping phase is to produce a model of the Functional User Requirements
(FUR) of the software to be measured from its available artefacts using the principles of the
COSMIC ‘Generic Software Model’. We first state these principles, then describe the
elements of the model in more detail and finally deal with the mapping process.

6.1 The Generic Software Model

PRINCIPLES – The COSMIC Generic Software Model

a) A piece of software interacts with its functional users across a boundary, and
with persistent storage within this boundary.

b) Functional user requirements of a piece of software to be measured can be
mapped into unique functional processes.

c) Each functional process consists of sub-processes.

d) A sub-process may be either a data movement or a data manipulation.

e) A data movement moves a single data group .

f) There are four data movement types, Entry, Exit, Write and Read.

• An Entry moves a data group into a functional process from a functional user.

• An Exit moves a data group out of a functional process to a functional user.

• A Write moves a data group from a functional process to persistent storage.

• A Read moves a data group from persistent storage to a functional process.

g) A data group consists of a unique set of data attributes that describe a single
object of interest.

h) Each functional process is started by its triggering Entry data movement. The
data group moved by the triggering Entry is generated by a functional user in
response to a triggering event.

i) The size of a functional process is equal to the total count of its data movements.

j) A functional process shall include at least the triggering Entry data movement and
either a Write or an Exit data movement, i.e. it shall include a minimum of two
data movements. There is no upper limit to the number of data movements in a
functional process and hence no upper limit to its size.

k) As an approximation for measurement purposes, data manipulation sub-
processes are not separately measured; the functionality of any data manipulation
is assumed to be accounted for by the data movement with which it is associated.

NOTE: The COSMIC Generic Software Model, as its name suggests, is a logical
‘model’ that exposes units in which software processes data that are suitable for
functional size measurement. The model does not intend to describe the physical
sequence of the steps by which software executes nor any technical implementation
of the software.

Important remark: ALL of the COSMIC keywords in the above principles (except ‘persistent
storage’ should really end in ‘-type’. For example ‘sub-processes’ should really be written as

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 21

‘sub-process types’ and ‘Entry’ as ‘Entry-type’. Like ALL FSM methods COSMIC
distinguishes between a ‘type’ and an ‘occurrence’ of a thing. However, we omit ’-type’ from
all these keywords for ease of reading, unless we need to distinguish ‘types’ and
‘occurrences’.

Principle a) simply summarizes all that software does. The other principles are explained in
the following sections of this chapter.

6.2 A key relationship: events / functional users / functional processes

Principles b) and h) tell us that the task of software is to respond to events that occur in the
world of its functional users. A functional user informs software that an event has occurred
and may send data about the event. The software must do something useful for the
functional user(s) that have an interest in the response to that event. We call this ‘something
useful’ a ‘functional process’. All software FUR can be expressed in terms of functional
processes.

The relationship between events in the world of the functional user and functional processes
of the software is shown in Figure 6.1. (The boundary is the interface between the software
being measured and its functional user(s).)

Figure 6.1 - The relationship between events, functional users and functional
processes

The general interpretation of this diagram is that an event causes a functional user to
generate a message (a data group) that is moved by a ‘triggering Entry’ into its functional
process, thus starting the functional process. (Note, however, when a human functional user
decides to make an enquiry on existing data, the human user effectively generates the event
and then the message.)

An event is ‘something that happens’. A triggering event has either happened or not
happened; it cannot be sub-divided for the FUR of the software to be measured.

EXAMPLE: Suppose a soccer (football) match. The FUR of three different software
applications could have quite different views of the events that happen at the match.

Application A allows reporters to enter the results of football matches for a newspaper.
The only event that the FUR recognizes is ‘match finished’.

Application B is a ‘live reporting’ system that enables a reporter to enter comments that
are transmitted over the web to on-line users of the application about anything the reporter
considers significant that happens during the match, e.g. kick-off, a goal scored, foul,
injury, etc. The only event that the FUR recognizes is ‘anything that happens about which
the reporter enters a comment to Application B’.

Application C allows real-time monitoring of the performance of the players. Each player
carries a GPS position-sensing device and a heart-beat monitor, which transmits data at

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 22

regular very short intervals. The only event that the FUR recognizes is a ‘tick’ of the clock
that controls the transmission of data on the current position and heart rate of each player
at each ‘tick’ to the application C.

(Remember that for all these FUR we should really be writing ‘event-type’. Each of the
three FUR recognizes only one event-type but it is a different event-type for each FUR.
But in terms of event-occurrences, App A expects one occurrence for each match, App B
expects maybe several tens per match, and App C expects several tens of thousands per
match.)

Note that Figure 6.1 says nothing about the degree (or ‘cardinality’) of the relationships
between the various concepts. For example a single event might be detected by multiple
functional users of the same or different pieces of software (e.g. an earthquake detected by
multiple sensors); a functional user of one piece of software may detect many types of
events (e.g. humans interacting with software).

6.3 The structure of FUR and of functional processes

Principles b), c) and d), which describe the theoretical structure of FUR, i.e. their
decomposition into functional processes and sub-processes, is illustrated in the left-hand part
of Figure 6.2.

Functional User

Requirements

Functional

Processes

Data

Manipulation

Data

Movement

Sub-processes

Theory: Principles b), c), d)

Functional User

Requirements

Functional

Processes

Data Movements

(account for data

manipulation)

1

1

n

2 : n

In practice, with Principles i), j)

Figure 6.2 - The structure of Functional User Requirements

[The ‘crow’s foot’ symbol shows the permitted degree of the relationship between two
adjacent concepts. Principle i) is expressed by showing that one functional process can have
from 2 (minimum) up to ‘n’ data movements.]

Correctly identifying functional processes is the most important step of the Mapping phase.
So you really must understand its full definition.

DEFINITION – Functional process

a) A set of data movements, representing an elementary part of the Functional
User Requirements for the software being measured, that is unique within
these FUR and that can be defined independently of any other functional
process in these FUR.

b) A functional process shall have only one triggering Entry. Each functional
process starts processing on receipt of a data group moved by the triggering

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 23

Entry data movement of the functional process.

c) The set of all data movements of a functional process is the set that is
needed to meet its FUR for all the possible responses to its triggering Entry.

NOTE 1: When implemented, it is an occurrence of a functional process that
starts executing on receipt of an occurrence of a data group moved by an
occurrence of a triggering Entry.

NOTE 2: The FUR for a functional process may require one or more other
Entries in addition to the triggering Entry.

NOTE 3: If a functional user sends a data group with errors, e.g. because a
sensor-user is malfunctioning or data entered by a human has errors, it is
usually the task of the functional process to determine if the event really
occurred and/or if the entered data are really valid, and how to respond.

NOTE 4: A functional process is ‘unique’ (as in a) above), and its total size
must be included in the size of the FUR, if it is initiated by a triggering Entry that
results originally from a triggering event that is distinguished as unique within
the FUR. Two or more functional processes within the same FUR may be
unique, even though they share some common functionality.

6.4 Accounting for data manipulation

The COSMIC method does not measure data manipulation explicitly because there is no
generally accepted way of measuring data manipulation so that it can be combined with a
measure of data movements to produce a usable measure of functional size. We therefore
invoke principle j) to assume that each data movement can account for any associated data
manipulation, as shown in the right-hand part of Figure 6.2. This assumption has proven to
be reasonable for all the practical purposes such as project performance measurement and
estimating for which the method was designed and for the domains in which it is commonly
used. Where the method cannot account adequately for data manipulation, the COSMIC
measurement method has provision for local extensions to the method to overcome the
limitation.

6.5 The four types of data movements

Principle e) is illustrated in Figure 6.3.

Figure 6.3 - The four types of data movements

Entries and Exits move data in and out of the software from/to functional users respectively.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 24

Reads and Writes move data from persistent storage to the software, or vice versa,
respectively.

6.6 Persistent storage

Persistent storage (shown in Figure 6.3) is an abstract concept of the Generic Software
Model. In the model, such storage is accessible by any software in any layer if it needs to
store data or to retrieve stored data. After a functional process has written some data on
persistent storage, that ‘persistent data’, is available to other functional processes that need
it or to another occurrence of the functional process that wrote it.

A consequence of this concept is that if you are measuring, say, an application that must
store data or retrieve stored data, you do not have to think about how that data is physically
processed by software in lower layers or by the hardware. Just represent FUR that require
data to be stored or retrieved by Writes and Reads respectively.

You only need to think of persistent storage in terms of physical disks or memory if you must
measure software for which physical hardware devices (storage or other) have been defined
in the Measurement Strategy phase as functional users of the software. Functional users
always interact with the software to be measured via Entries and Exits.

6.7 A data movement moves a single data group describing one object of Interest

So how do we distinguish one Entry data movement from another Entry data movement, and
similarly for Exits, Reads and Writes?

An object of interest is any ‘thing’ (physical or conceptual) about which the software being
measured must process or store data. A data movement moves a single data group that
consists of one or more data attributes (known as ‘Data Element Types’ in other FSM
methods). All attributes in a data group describe the same one object of interest.

It is not necessary to identify the data attributes for measurement purposes. The only reason
to mention them is that it sometimes helps to distinguish different data groups and their
objects of interest by examining the data attributes.

Figure 6.4 shows the relationships between these three concepts, with two examples.

Object of

interest

Data

Attribute

Data Group

1

1

n

n

Principle g)

Sensor

Sensor

Data

Sensor ID

Snsr. State

Real-time ExampleBusiness Example

Employee

Employee

Salary History

Data

Employee

Base Data

ID

Address

Name Sal. start date

Salary

Employee

Salary

History

1
n

Birth date

ID

Figure 6.4 - Relationships of an object of interest, data groups and data attributes

To help you understand these concepts:

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 25

• If you are familiar with data analysis methods, often used in the domain of business
applications, then entity-types found in Entity-Relationship Analysis, and the subjects of
relations in 3rd normal form found in Relational Data Analysis will be objects of interest.
But these analysis methods are usually only applied to the structure of stored (or
‘persistent’) data groups. For a COSMIC measurement, you will also need to apply these
same analysis ideas to distinguish objects of interest and hence the data movements in
the input and output of functional processes. Each Entry and Exit moves a transient data
group describing one object of interest.

• There is a one-to-one relationship between objects of interest and the object classes
resulting from UML analysis, though of course they are not the same concept.

• In the domain of real-time software, it is NOT usually necessary to think about objects of
interest. Often, perhaps as shown in the real-time example of Figure 6.4, the functional
user - the sensor - can be seen as sending data about itself, i.e. the functional user plays
the part of object of interest, so it will have been identified earlier in the Measurement
Strategy phase. (There is no point in making all these distinctions unless doing so helps
the measurement process.). Similarly in business application software, if a human user
enters an ID and a password in a logon process to identify himself/herself to a system,
the human functional user is the object of interest of the data group entered.

6.8 The Mapping phase process

Assuming the available artefacts of the software to be measured are at the functional
process level of granularity, we examine them to derive the FUR expressed as a COSMIC
model. The steps of this process (remembering that we always refer to types) are:

• Identify the separate events in the world of the functional users that the software must
respond to, i.e. the ‘triggering events’

• Identify which functional user(s) of the software must respond to each triggering event by
generating a data group that is moved by a triggering Entry

• Identify one functional process for each triggering Entry

• Identify any other Entries and all the Exits, Reads and Writes of each functional process
needed to meet the FUR for all possible responses to the triggering Entry.

For the last step you may need to identify the data groups that are moved in each data movement and
the objects of interest that the data describe.

6.9 Some simple examples of Mapping

We can now analyze some simple examples to map from outline statements of requirements
to the COSMIC functional processes and data movements using the Generic Software
Model.

BUSINESS EXAMPLE: A simple Personnel System

Outline statement of requirements. A system is required to enable personnel staff to hold
and maintain data about employees, including their salary and the history of their salary
progression over time. [The statement also describes the data (attributes) to be recorded
about each employee and their validation criteria, but most of this detail need not concern
the Measurer in this simple example.] A report is required each month listing all
employees by name and their current salary, the total number of employees, and the total
current salary cost.

Measurement strategy parameters

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 26

Measurement purpose: An accurate functional size measurement of the Personnel
System for project effort estimating.

Measurement scope: The whole system as specified in the statement of requirements.

Functional users: Personnel staff.

Layer: Application layer.

Level of decomposition: ‘level 0’, i.e. no decomposition.

Mapping phase

Some assumptions:

• The data structure of the Business Example in figure 6.4 applies.

• Each employee will be allocated a unique ID by a member of personnel. The key of an
‘employee salary history’ record is [employee ID, salary start date].

• The word ‘maintain’ in the outline statement of requirements normally implies that
there must be Create, Read, Update and Delete functional processes (remember the
‘CRUD’ acronym?) for each object of interest. ‘Update’ will enable a change of any
attribute except the key attribute(s) of any data group.

• There are two objects of interest (‘employee’ and ‘employee salary history’) about
which persistent data must be held. We will need the four ‘CRUD’ functional processes
to maintain the employee base data.

• We also assume that an employee salary history record must be created when an
employee first starts work. Subsequently, an employee’s salary may be updated at
any time, i.e. not just when the employee base data must be updated. So there is no
need for separate ‘create’, or ‘delete’ functional processes for the employee salary
history. However, there is a need for an ‘update employee salary’ functional process
and for a separate ‘read’ functional process for enquiries on employee salary data.
Adding in the process to produce the monthly report means the requirements can be
satisfied by 7 functional processes. (We show below the analysis of four of these.)

• In practical situations there may also be FUR for a ‘read’ functional process to display
the employee’s base data separately from the enquiry to display the employee’s salary
history. Also, when an employee leaves, the ‘delete’ functional process may be
required to archive the employee base and salary history data, rather than actually
delete it. We ignore these possible requirements for simplicity.

• Note also as a general rule when measuring on-line business applications, that
‘menus’ that only assist navigation and the selection of functional processes, and
‘blank’ data entry screens should be ignored. It is the movement of data by Entries,
Exits, Reads and Writes that must be identified for measurement purposes.

1. Analysis of functional process ‘Create employee’.

The FUR is to enter data for a new employee.

(The examples show the data movements and the data group that each of them moves).

Functional process ‘Create employee’. Triggering event: a new person is employed

Triggering Entry : Employee base data

Entry : Initial salary and its start date

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 27

Read : Employee base data (to check that no employee already exists with the
entered ID)

Write : Employee base data

Write : Employee salary history (a new record is created when the salary is
first entered)

Exit : Error/confirmation messages (There must be error messages for
various validation failures and also some form of confirmation on
successful data entry. We include one Exit to account for all such
messages.)

2. Analysis of ‘Read and Update employee data’ processes, including possible salary
update

We assume a user will first wish to retrieve and display the employee’s base data, before
entering a change to one or more attributes, including maybe a new salary. This
procedure will require two functional processes. The first is triggered by the event of the
user deciding to display the existing data; it is the ‘read employee base data’ functional
process. The second is triggered by the event that one or more attribute(s) of the
employee have changed in the real world; it is the ‘update employee base data’ functional
process. The two functional processes are:

Functional process ‘Read employee data’. Triggering event: Decision to display
existing data

Triggering Entry : Employee ID

Read : Employee base data

Read : Employee salary history

Exit : Employee base data

Exit : Employee salary history

Exit : Error/confirmation messages (in case a non-existent ID was entered)

Functional process ‘Update employee data’. Triggering event: Employee data has
changed in some way

Triggering Entry : Updated employee base data (for the update of one or more
attribute(s))

Entry : Updated salary and its start date

Write : Employee base data (the updated record)

Write : Employee salary history (a new record is created if the salary has been
updated)

Exit : Error/confirmation messages (for entry of invalid data or the possible
failure of the update)

3. Analysis of the process to produce the monthly report for the payroll department

Functional process ‘End-of-month employee’ report. Triggering event: The end of the month

Triggering Entry : End of month time signal (every functional process must have a triggering
Entry, even though this one conveys no variable data)

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 28

Read : Employee base data (to get employee ID’s and names)

Read : Employee salary history (to obtain the current salary)

Exit : Employee current salary (one line for each employee with their ID, name and
salary

Exit : End-of-month employee totals (of number of employees and of their total
salary)

NOTES: the final Exit moves a data group describing the object of interest ‘All employees’.
No data is stored about this object of interest, so the data group is transient; but the object
of interest is a group of real people, i.e. a real ‘thing’ in the world of the functional user.

We have not counted an error message for this functional process as there does not seem
to be any reason for the application to have to generate such a message. (The operating
system might generate an error message if the data cannot be found, but this is not part of
the application.)

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 29

REAL-TIME EXAMPLE: A simple domestic alarm system

Outline statement of requirements

We deduce the functionality available to normal house occupants and allocated to
software from knowing how to use the system and by examining it physically. We are not
interested in the functionality provided for the alarm maintenance engineer, nor in the
functions to set up the system when it is first installed.

The main purpose of the alarm system is, when it is activated, to start one or two sirens
(devices that make a loud noise) if a sensor detects a movement inside the house or if the
front door is opened.

The software supports the alarm system’s human interface via a keypad and red/green
LED’s. The software also accepts data from a device that can sense whether the main
front door of the house is open or not, and from several internal movement detectors. (The
alarm system can handle any number up to 10 movement detectors. The number does
not matter for this analysis as they are all identical and equivalent.) The alarm system also
controls an internal and an external siren.

The alarm system is always powered ‘on’, but is not ‘active’, i.e. the movement detectors
and the front door sensor are not working, unless the system is activated by the occupant.
When the system is activated, either the software waits in a state where it can receive
signals from these sensors, or the software polls the sensors to obtain their state. We do
not know which process is used and it does not matter for the functional size
measurement.

To activate and de-activate the alarm system, the house occupant must enter the correct
PIN (Personal Identification Number) within a pre-set time. The PIN is stored by the
software and can be changed, so there must be some persistent storage. When the first
digit of a PIN is entered, the internal siren is started; this siren is stopped on entry of all
digits of the correct PIN. If the wrong PIN is entered three times or if the correct PIN is not
entered within the pre-set time, the external siren is also started.

There is a battery to provide continuity if the electricity power supply fails, so there must
be a power voltage detector.

The green LED is illuminated when power is switched on. If a siren is started or if the
power fails, the green LED is switched off and the red LED is illuminated.

As certain functions must be completed within pre-set times, there must be a clock
mechanism. For example, if the alarm system is activated before leaving the house, the
occupants must leave and close the front door within a pre-set number of seconds; if not,
the sirens are started. The external siren must not continue for more than the legal limit of
20 minutes.

We do not know how the clock is implemented but assume a software implementation for
simplicity, which starts whenever needed. The functionality to keep track of elapsed times
is then a form of data manipulation, which we can ignore.

Measurement strategy parameters

Purpose of the measurement: To measure the functional processes of the embedded
application software available to the house occupant for normal operation.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 30

Measurement scope: The alarm system embedded application software functions
available to the house occupant for normal operation. (We are not interested if there is an
operating system)

Functional users: A context diagram shows the hardware functional users and how they
interact with the software. Note that the movement detectors are all functionally identical,
so do not need to be distinguished. The human user of the alarm system, referred to as
‘the occupant’ is not a functional user; he/she interacts with the application only via the
keypad and the audible and visual signals.

Layer: Application.

Level of decomposition: ‘level 0’, i.e. no decomposition.

Figure 6.5 – The Domestic Alarm System Context Diagram

The functional processes: After initial set-up, the alarm system application provides the
occupant with nine functional processes. These can be identified by considering the
events that the software must respond to.

1) The occupant wishes to change the existing PIN.

2) The occupant wishes to leave the house and activate the alarm system.

3) The front door sensor detects that the door has been opened whilst the alarm system
is activated.

4) The occupant wishes to activate the alarm system whilst he/she is in the house, e.g.
when retiring at night, out of range of the movement detectors.

5) The occupant wishes to deactivate the alarm system when inside the house, e.g.
when getting up in the morning before moving within range of the movement
detectors.

6) A movement detector signals a movement whilst the alarm system is activated (which
starts the internal siren).

7) The occupant wishes to cancel the siren(s) and to deactivate the alarm system by
entering the correct PIN following events 3) or 6).

8) The power voltage detector signals failure of the mains electrical supply

9) The power voltage detector signals restoration of the mains electrical power supply.

Analysis of an example functional process:

We analyze the event 3) on the list above (the front door is opened whilst the alarm
system is activated). When the front door sensor detects this event, the internal siren

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 31

starts; the correct PIN code must then be entered within a pre-set time to de-activate the
system and to stop the internal siren. If the PIN code isn’t entered before the pre-set time,
or the wrong code is entered more than three times, the external siren also starts. The
functional process has the following data movements.

Functional process: Possible intruder detected. Triggering event: Door opens
whilst alarm system is activated.

Triggering Entry : ‘Door open’ message from the front door sensor

Read : Get PIN from persistent storage

Exit* : Message to switch green LED from ‘on’ to ‘off’

Exit* : Message to switch red LED from ‘off’ to ‘on’

Exit : Message to start the internal siren

Entry : PIN code entered (If the wrong code is entered, the user may enter the
PIN two more times but the process is always the same so it is only
measured once.)

- ** : Message to switch red LED from ‘on’ to ‘off’ (on successful entry of
PIN)

- ** : Message to switch green LED from ‘off’ to ‘on’ (on successful entry of
PIN)

Exit : Message to stop internal siren (on successful entry of PIN)

Exit : Message to start external siren (after three unsuccessful PIN entries,
or if the PIN is not entered in time)

Exit : Message to stop the external siren (after 20 minutes, a legal
requirement)

NOTES: (*) The green and red LEDs are different types as they are subject to different
functional user requirements, therefore identify two functional user types. (**) These are
repeat occurrences of the Exits to the LEDs earlier in the process, but with different data
values (‘on’ instead of ‘off’, and vice versa).

6.10 Some general lessons from these examples

• Implementation details are generally irrelevant to the Mapping Process. For example the
functional processes of the personnel system could be implemented in many ways, all
leading to the same data movements in the COSMIC model. Similarly, we do not need to
know how the ‘door open’ message triggers the process of the Domestic Alarm system.
(Either the software, when activated, could poll the front door sensor and the movement
detectors to ascertain their status, or these sensors could send their status to the
software.)

• It helps understanding to write out the data movements of a functional process in roughly
the sequence they would be executed. But the actual sequence will be more complicated
in practice. For example the validation of the data entered in the personnel system could
be interspersed with the issue of error message occurrences.

• The examples illustrate the part of the definition of a functional process that states that
‘The set of all data movements of a functional process (which includes the triggering
Entry) is the set that is needed to meet its FUR for all the possible responses to its
triggering Entry’. In the personnel system process that updates an employee data, a new

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 32

salary history record is created only if the employee’s salary is changed. In the alarm
system functional processes, messages sent to the LED’s and/or to the sirens will
depend in each case on whether the occupant entered the correct PIN or not. The
Measurer’s only task is to identify all the data movements that are needed by a functional
process to meet the FUR for all of its possible responses to all the data it may receive in
its Entries and Reads. The Measurer does not have to worry about the sequence of the
data movements, nor whether they are needed or not in any particular occurrence of the
functional process which will depend on the data values entered.

• The set of data movements of a functional process is the set of types, not of occurrences.

• The alarm system case is an example where the object of interest of each data group
entering or exiting the software is also the functional user that sent the group or that
receives it (i.e. the functional user is sending or receiving data about itself). In these
cases, having identified the functional users in the Measurement Strategy phase, the
objects of interest have been identified as well.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 33

77
COSMIC METHOD - THE MEASUREMENT PHASE

By the end of the Mapping phase, the Measurer will have produced a COSMIC model of the
FUR of the piece of software to be measured (an instance of the Generic Software Model).
We can then measure the functional size of the FUR of the software by applying the rules of
the Measurement phase to this model.

7.1 The COSMIC measurement principle

The COSMIC measurement principle reflects the model shown in the right-hand part of
Figure 6.2.

The COSMIC measurement principle

The functional size of a piece of software is equal to the number of its data
movements

A functional size is measured in units of ‘COSMIC Function Points’, abbreviated as ‘CFP’. 1
CFP is defined by convention as the size of a single data movement (Entry, Exit, Read or
Write).

7.2 Size aggregation

Sizes can be measured at various levels of aggregation.

• The size of a functional process is equal to the number of its data movements

• The size of a piece of software is equal to the sum of the sizes of its functional processes

• The size of a piece of software can be derived from the size of its components provided
the aggregation rules given in the Measurement Manual are followed

The following table shows a way of recording the results of the analysis of the four functional
processes of the Personnel System analyzed in section 6.9, using the matrix given in
Appendix A of the Measurement Manual [5].

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 34

Personnel System

Functional Procesess

Em
p

lo
ye

e
B

as
e

D
at

a

Em
p

lo
ye

e
ID

Em
p

lo
ye

e
Sa

la
ry

H
is

to
ry

Er
ro

r/
C

o
n

fi
rm

at
io

n

M
es

sa
ge

En
d

 o
f

m
o

n
th

'c
lo

ck
 t

ic
k'

Em
p

lo
ye

e
cu

rr
en

t

sa
la

ry

Em
p

lo
ye

e
to

ta
ls

En
tr

ie
s

Ex
it

s

R
ea

d
s

W
ri

te
s

To
ta

l

Create Employee E, R, W E, W X 2 1 1 2 6

Read Employee data R, X E R, X X 1 3 2 6

Update Employee data E, W E, W X 2 1 2 5

End of month report R R E X X 1 2 2 5

6 7 5 4 22Totals for Personnel System:

Data Group Names Nos. of Data Movements

The functional process of the Domestic Alarm System analyzed in section 6.9 has 2 x
Entries, 1 x Read and 6 Exits. Its total size is therefore 9 CFP.

7.3 Size of required changes

The size of some required changes to an existing piece of software, e.g. as handled by an
‘enhancement’ project, are measured as follows:

• The size of a required change to a data movement (i.e. that must be added, modified or
deleted) is measured by convention as 1 CFP. (‘Modified’ could mean any change to the
data manipulation associated with the data movement and/or to any of the attributes of
the data group moved.)

• The minimum size of a change to a functional process is therefore 1 CFP.

• The size of all the required changes to a piece of software is equal to the number of data
movements that must be added, modified or deleted, summed over all functional
processes.

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 35

88
ADVANTAGES AND BENEFITS OF THE COSMIC METHOD

The COSMIC method of measuring a functional size of software from its requirements is the
first such method:

• designed according to basic software engineering principles,

• to be applicable to software from the business application, real-time and infrastructure
domains and some types of scientific/engineering software, in any layer of a software
architecture, at any level of decomposition from a whole application down to its smallest
components,

• for software developments or for enhancements, independently of all technology used
and of the development methods,

• designed and maintained by an international group of software metrics experts,

• designed to conform to the ISO 14143/1 standard on the principles of functional size
measurement,

• that is completely ‘open’ with all documentation available for free download from its
website www.cosmic-sizing.org.

• and that has been accepted as an International Standard (ISO 19761).

Compared with ‘1st generation’ functional size measurement methods (see chapter 3), the
COSMIC method:

• is completely stable due to its basic design principles which have not changed since the
method was first published. This means that an organization’s investment in existing
measurements is safeguarded and that the method will be applicable to future software
paradigms,

• has an open-ended measurement scale that is conformant with measurement theory.
This means that all mathematical manipulations of COSMIC size measurements are
valid,

• has required no calibration against effort and is thus a pure measure of functional size4.

The COSMIC method is supported by:

• comprehensive documentation; the Measurement Manual has been translated into more
than ten languages,

• guidelines that describe how to apply the method to specific types of software, e.g. data
warehouse or SOA software, or for specific project management approaches, e.g. Agile
methods,

• case studies and tools for collecting and reporting measurement data,

4 Recent research [15] has demonstrated that COSMIC sizes correlate very well with sizes of the same software
measured by the MkII FP method. The size scale of the latter method was calibrated by relating sizes to project
effort. The good correlation implies that the COSMIC size scale should be suitable for the purposes for which it
was designed (as a component of measuring project performance and as input for project effort estimation), even
though the size method was not calibrated against effort.

http://www.cosmic-sizing.org/

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 36

• comprehensive benchmark data available via www.isbsg.org. Many measurements of
software projects in different domains have shown an excellent correlation of COSMIC-
measured sizes with project effort.

• vendor services including suppliers of training, consultancy, estimating tools, etc,

• an Entry-level certification exam,

• guidelines for assuring the accuracy and the comparability of measurements

• documented variants for approximate COSMIC sizing that can be used early in the life of
a project when all the details for the requirements have not yet been established, or for
quick size measurement [7],

• documented methods of converting sizes measured using 1st generation FSM methods to
COSMIC sizes using statistical correlations [16],

• active user groups on Linkedin (‘COSMIC Users Group’) and Twitter (@COSMIC_FSM),

• its website www.cosmic-sizing.org where there is a Forum for asking questions and for
discussions, and for announcing news items.

The COSMIC method is being used successfully around the world for project performance
measurement, for estimating, project scope control etc. The following mind map shows a
range of possible uses of functional size measurements.

Produce

measurable

requirements/

specifications

Control

Customer/

Supplier

Contract

Establish

and use

performance

Benchmarks

Control

Project

‘Scope

Creep’

Improve

performance

on Projects and

Maintenance

& Support

Measure

performance

on Projects and

Maintenance

& Support

Estimate

Project

effort and

duration

Size

requirements

= ‘Functional

Size’

Client

investment

decision:

Supplier

selection

Value

software asset

at replacement

cost for Balance

Sheet

Improve

requirements

quality

Figure 8.1 – Mind map of possible uses of functional size measurements

The COSMIC method is also being extensively studied by the academic research
community. Notable amongst these are several approaches to automating COSMIC size
measurement from, e.g. requirements held in UML and from executing programs.

The www.cosmic-sizing.org website has a large library of research and conference papers

http://www.isbsg.org/
http://www.cosmic-sizing.org/
http://www.cosmic-sizing.org/

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 37

RReeffeerreenncceess

REFERENCES

[1] ISO 19761 – Software Engineering – COSMIC: a functional size measurement method’

obtainable from www.iso.org.

[2] The COCOMO II Estimating Model’, www.csse.usc.edu/csse/research/COCOMOII

[3] Albrecht, A.J., ‘Measuring Application Development Productivity’, IBM Applications

Development Symposium, Monterey, October 1979

[4] ISO 14143-1 – Software and Systems Engineering – Software measurement – Functional size

measurement – Definition of concepts

[5] The COSMIC Functional Size Measurement Method: Measurement Manual’(The COSMIC

Implementation Guide for ISO 19761)

[6] Guideline for ‘Measurement Strategy Patterns’: Ensuring that COSMIC size measurements may

be compared

[7] Guideline for Early or Rapid COSMIC Functional Size Measurement

[8] Guideline for sizing Business Application software

[9] Guideline for sizing Real-time software

[10] Guideline for sizing Data Warehousing application software

[11] Guideline for sizing Service-Oriented Architecture software

[12] Guideline for the use of COSMIC FSM to manage Agile projects

[13] Guideline on Non-functional and Project requirements

[14] A, Dasgupta, C. Gencel, C., Symons, ‘A process to improve the accuracy of MkII FP to

COSMIC size conversions: insights into the COSMIC method design assumptions’, IWSM 2015,

Krakow, Poland.

[15] Guideline on how to convert ‘First Generation’ Function Point sizes to COSMIC sizes

[16] F. Valdes Souto, Quick Reference Guide

[17] A. Abran, What is a COSMIC Function Point?

[18] A. Abran, COSMIC Software Velocity with COSMIC Function Points

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=54849
http://www.csse.usc.edu/csse/research/COCOMOII

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 38

AAppppeennddiicceess

APPENDICES

A.1 ACKNOWLEDGEMENTS

Version 1.2 Reviewers

Cigdem Gencel

Free University of Bolzano-Bozen

Italy

Arlan Lesterhuis*

MPC

The Netherlands

Bruce Reynolds

Tecolote Research

USA

Francisco Valdes Souto

SPINGERE

Mexico

*) Editor of this document

Version 1.0 and 1.1 Reviewers

Alain Abran

École de Technologie Supérieure,
Université du Québec

Canada

Diana Baklizky

Métricas

Brazil

Lindsay Davies

Freelance Editor

United KIngdom

Peter Fagg

Pentad

United Kingdom

Cigdem Gencel

Free University of Bolzano-Bozen

Italy

Arlan Lesterhuis 1)

The Netherlands

Bernard Londeix

Telmaco

United Kingdom

Hassan Soubra 2)

Ecole Supérieure des Techniques
Aéronautiques et de Construction
Automobile

France

Charles Symons 1)

United Kingdom

Monica Villavicencio

ESPOL

Ecuador

Frank Vogelezang 2)

Ordina

The Netherlands

Chris Woodward

CW Associates

United Kingdom

1) Editors of this document 2) Reviewers of v1.1

A.2 VERSION CONTROL

The following table summarizes the evolution of this document.

DATE REVIEWER(S) Modifications / Additions

2000 COSMIC Core Team ‘Introduction & Overview’ Slide Presentation &
Supplementary Notes

September
2007

14 reviewers from 7
countries

First version of the ‘Method Overview’ document for v3.0
of the COSMIC method

May 2014 COSMIC Measurement
Practices Committee

Version 1.0 of the ‘Introduction to the COSMIC method of
measuring software’, for the COSMIC version 4.0.

January COSMIC Measurement Updated to refer to the new ‘cosmic-sizing’ website and

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 39

2016 Practices Committee to version 4.0.1 of the COSMIC method. Some other
corrections and editorial changes have been made. See
Appendix A.3.2

September
2019

COSMIC Measurement
Practices Committee

Updated to version 4.0.2 of the COSMIC method. Some
other corrections and editorial changes have been made.
See Appendix A.3.1

A.3 GUIDELINE CHANGE HISTORY

A.3.1 Main changes from version 1.1 to 1.2

V1.2 Ref Change

General The sections ‘Acknowledgements’ and ‘Version Control’ moved to Appendices
at the end of the document

1.3 Project managers and Management added to those who benefit from functional
size measurement

4.2 Figure 4.1 - The COSMIC measurement process updated

4.4 Figure 4.2 - The four types of data movements updated

6.1 Text of the Generic Software Model updated. Explanation of ‘type’ updated.

6.2 Figure 6.1 - The relationship between events, functional users and functional
processes updated

6.2 Unclear statement ‘The only rule …’ removed

6.3 Definition of ‘functional process’ updated

6.5 Figure 6.3 - The four types of data movements updated

6.7 Sentence added that shows that the ‘FU = OOI’ phenomenon not only applies
in the real-time domain but also in the business domain

References Versions and data of the COSMIC documents removed to prevent refence to
outdated versions

A.3.2 Main changes from version 1.0 to 1.1

V1.0 Ref Change

General References to the www.cosmic-sizing.org web-site replace references to
the www.cosmicon.com site.

General References to other COSMIC publications have been updated to the
status as at end 2015.

2.6 The COSMIC definition of Non-Functional Requirements (NFR) no longer
includes project requirements and constraints. These are now defined and dealt
with separately from NFR in [14]. This change has resulted in minor changes to
the examples in section 2.6.

6.9 The description in the Mapping Phase of the assumptions about the simple
personnel system example have had minor editorial changes to improve clarity.

6.9 The real-time example of a domestic alarm system needed several
clarifications and corrections, the most important of which are as follows.

http://www.cosmicon.com/

COSMIC Method v4.0.2 Introduction to COSMIC v1.2 Copyright © 2019 40

V1.0 Ref Change

General References to the www.cosmic-sizing.org web-site replace references to
the www.cosmicon.com site.

General References to other COSMIC publications have been updated to the
status as at end 2015.

• The text potentially confused the ‘alarm system’ and the ‘alarm’ (the thing
that makes a loud noise). The latter was re-named ‘siren’.

• Some aspects of the description of the alarm system functionality were re-
written to make them clearer and more complete. The list of events was re-
written to make clear the functional user that causes or senses the event.

• The need for an additional functional process (number 7) was recognized.

8 Findings from recent research on functional size measurement conversion
(Footnote 5) and on COSMIC size measurement automation have been added,

A.4 CHANGE REQUESTS, COMMENTS, QUESTIONS

Where the reader believes there is a defect in the text, a need for clarification, or that some
text needs enhancing, please send an email to: mpc-chair@cosmic-sizing.org

You can use the forum on cosmic-sizing.org/forums to post your questions and receive
answers from our world-wide community. The quality of any answers will depend on the
knowledge and experience of the community member that writes the answer; the MPC
cannot guarantee the correctness. Commercial organizations exist that can provide training
and consultancy or tool support for the method. Please consult the www.cosmic-sizing.org
web-site for further detail.

http://www.cosmicon.com/
mailto:mpc-chair@cosmic-sizing.org
http://cosmic-sizing.org/forums/
http://cosmic-sizing.org/forums/
http://www.cosmic-sizing.org/
http://www.cosmic-sizing.org/

	Why measure software size?
	1.1 Why would anyone want to ‘measure’ software?
	1.2 Software size measurements have many other uses
	1.3 Who typically benefits from these measurements?

	How to measure software size?
	2.1 Like any other unit of measurement, you need standards
	2.2 What are the most important ways of measuring software size?
	2.3 Counting source lines of code
	2.4 Measuring software requirements
	2.5 Other ways of measuring software size
	2.6 A closer look at software requirements – FUR and NFR
	2.7 Skills needed for COSMIC Measurers

	A brief history of functional size measurement
	3.1 How did it all start?
	3.2 The International Organization for Standardization (ISO) steps in
	3.3 COSMIC gets going
	3.4 ISO’s final word: ‘Let the market decide’

	A very brief overview of the COSMIC method
	4.1 Applicability of the method
	4.2 The three phases of the COSMIC functional size measurement process
	4.3 Phase 1: Measurement Strategy
	4.4 Phase 2: Mapping
	4.5 Phase 3: Measurement

	COSMIC method - the measurement strategy phase
	5.1 Why do we need a ‘strategy’?
	5.2 The five key strategy parameters to be determined
	5.3 Software ‘layers’
	5.4 Examples of how the ‘purpose’ of a measurement affects the other measurement strategy parameters
	5.5 What else should you think about before starting to measure?

	COSMIC method - the mapping phase
	6.1 The Generic Software Model
	6.2 A key relationship: events / functional users / functional processes
	6.3 The structure of FUR and of functional processes
	6.4 Accounting for data manipulation
	6.5 The four types of data movements
	6.6 Persistent storage
	6.7 A data movement moves a single data group describing one object of Interest
	6.8 The Mapping phase process
	6.9 Some simple examples of Mapping
	6.10 Some general lessons from these examples

	COSMIC method - the measurement phase
	7.1 The COSMIC measurement principle
	7.2 Size aggregation
	7.3 Size of required changes

	Advantages and benefits of the COSMIC method
	References
	APPENDICES
	A.1 ACKNOWLEDGEMENTS
	A.2 VERSION CONTROL
	A.3 GUIDELINE CHANGE HISTORY
	A.3.1 Main changes from version 1.1 to 1.2
	A.3.2 Main changes from version 1.0 to 1.1
	A.4 CHANGE REQUESTS, COMMENTS, QUESTIONS

