
Technology and Investment, 2013, 4, 261-268
Published Online November 2013 (http://www.scirp.org/journal/ti)
http://dx.doi.org/10.4236/ti.2013.44031

Open Access TI

Using the ISO 19761 COSMIC Measurement Standard to
Reduce “Information Asymmetry” in Software

Development Contracts and Enable Greater
Competitiveness

Francisco Valdés Souto, Alain Abran
Software Engineering Research Laboratory (GÉLOG), École de Technologie Supérieure, University of Québec, Montreal, Canada

Email: francisco.valdes.1@ens.etsmtl.ca, Alain.Abran@etsmtl.ca

Received June 26, 2013; revised July 26, 2013; accepted August 4, 2013

Copyright © 2013 Francisco Valdés Souto, Alain Abran. This is an open access article distributed under the Creative Commons At-
tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

ABSTRACT

In most economic transactions involving software development projects, differences in the amount and quality of in-
formation possessed by economic agents (i.e. producers and customers) can lead to significant market inefficiencies.
This paper describes the way the information derived from the functional size of software measured using the ISO
19761 COSMIC measurement standard that can help reduce information asymmetry in software development transac-
tions, and lead to increased competitiveness in the software industry.

Keywords: Software Projects; COSMIC; Information Asymmetry; ISO 19761; Software Industry Competitiveness;

Software Characterization; Software Facts

1. Introduction

In the Information Technology (IT) sector, there is fre-
quently a serious imbalance in the contracts concluded
between software providers and software customers. This
imbalance is generated by the greater, and superior, tech-
nical knowledge of the providers relative to that of the
customers.

Software development is the practice of automating
information processing tasks. The output of this practice
is the software itself, which is not a tangible product, but
rather a service embedded within a computing infra-
structure. Negotiating a software development contract is
usually based on a high-level description of the cus-
tomer’s needs on the one hand, in terms of the capacity
to process and store information, and, on the other, the
claim of the software provider that can meet those needs,
and, implicitly, perhaps more.

Tellez [1] defines a computer contract as “the volun-
tary agreement of two or more parties in order to create
bonds of obligations [that] seek to create, regulate, mod-
ify or terminate a legal equity relationship, and the provi-
sion of which must be related to all or part of the com-

puter: hardware, software, computer servicing, the data
provided by computers, or multiple or complex IT ser-
vices”. The “software development contract” is a type
“software contract” that is a classification of computer
contract.

“Unfortunately, the providers’ business policy consists
of offering innovative technology-related concepts to
clients and not necessarily the best products, with an un-
defined, and often hidden, disparity between what is re-
quired and what is offered” [1].

In software development contract negotiation, we of-
ten observe what is known as “asymmetric information”.
Neoclassical economic theory takes for granted the exis-
tence of an ideal marketplace, where both the provider
and the customer have all the information they need, and
the value of the product is reflected in an agreed price.
However, in reality, in most commercial transactions,
there are differences in the amount and quality of infor-
mation possessed by the economic agents (i.e. providers
and customers) which are serious enough to lead to sig-
nificant market inefficiencies.

This paper describes an approach using the ISO 19761
standard for software functional size, also known as the

F. V. SOUTO, A. ABRAN 262

COSMIC method, to reduce the amount of information
asymmetry in commercial transactions involving soft-
ware development projects, and to promote greater com-
petitiveness in the software industry.

The paper is organized as follows: Section 2 describes
some types of software contract; Section 3 describes the
impact of industry regulation on the economy; Section 4
describes the international standard for functional size
measurement (FSM) ISO 19761, also known as the COS-
MIC measurement method; Section 5 presents the ap-
proach proposed to reduce information asymmetry and to
promote greater competitiveness in the software industry
through the use of the ISO 19761—COSMIC standard;
Finally, Section 6 presents the conclusions.

2. Computer Contracts

Computer and software technologies are advancing very
rapidly, and their impact on the social environment has
led to increased marketing of goods and services derived
from these technologies. This market is typically regu-
lated by computer contracts.

Tellez [1] defines a computer contract as “the volun-
tary agreement of two or more parties in order to create
bonds of obligations [that] seek to create, regulate, mod-
ify or terminate a legal equity relationship, and the provi-
sion of which must be related to all or part of the com-
puter: hardware, software, computer servicing, the data
provided by computers, or multiple or complex IT ser-
vices.”

Once computers had penetrated the military and scien-
tific domains, they were introduced into the business field,
and it was here that computer contracts began to prolifer-
ate.

Since those early days, “computer contracts have evolved
with technological advancement, but not on a par with
the law” [1].

R. M. A. Davara [2] gives the following definition of
computing goods: “All those components that make up
the system (i.e., the computer) as related to the hardware,
from the Central Processing Unit (CPU) to its peripherals
and those components directly related to the computer’s
functionality, and which taken as a whole constitute the
material support for the computer’s operation; to be con-
sidered therewith are also those virtual elements respon-
sible for giving commands, directions, data, and proce-
dures to automatically process information, and which
taken together embody the system’s logical support”. As
for computing services, they comprise “all those meant to
support and supplement computing actions in a relation-
ship of direct affinity with them”.

At the start, agreements for both goods and services
were included in a single contract. This resulted in am-
biguity and favored monopolistic trade practices, which
enabled large suppliers to bundle them in comprehensive

suites.
Following an antitrust action taken against IBM, dif-

ferent markets were generated, and goods and services
were procured separately. This in turn led to the emer-
gence of several companies specializing in particular
aspects of software.

According to V. J. Tellez [1], “Among the main issues
arising with computer contracts is the inequality of knowl-
edge of the elements (mainly technical) being negoti-
ated.” This issue is usually referred to as adverse selec-
tion in the economics field.

Adverse selection is “the phenomenon whereby there
is a hidden problem with a product and people on the
informed side of the market select in a way that is harm-
ful to the uninformed side of the market” [3]. The way
this situation generally plays out is that the customer is
forced to accept the contractual terms imposed by the
provider.

Tellez [1] also suggests that this situation can be
avoided if the consumer seeks the opinion of experts, in
order to become aware of the possible implications of a
contract. However, one of the drawbacks of this practice
is that, in fact, the experts providing the technical assis-
tance are seldom free from commercial bias, since they
are in a position to influence what services are offered by
the provider.

2.1. Classification of Computer Contracts

A classification of computer contracts needs to take into
account their legal nature. Tellez [1] describes them as
follows:
 These kinds of contracts are complex by nature, de-

riving as they do from a range of legal ties found in a
variety of contracts.

 They are atypical, as they are not specifically ruled
and there are no regulations explicitly intended for
them.

 They are principal contracts, not being subordinated
to any other contract.

 They are costly, because one of the parties makes an
expenditure in order to obtain certain benefits.

 They are consensual.
Tellez [1] created this classification of computer con-

tracts considering the focus (Figure 1):
 Hardware,

Figure 1. Computer contracts classification.

Open Access TI

F. V. SOUTO, A. ABRAN 263

 Software,
 Turnkey installation, and
 Ancillary services.

2.2. Software Contracts

Software development is the practice of automating in-
formation processing tasks. The output of this practice is
the software itself, which is not a tangible product, but
rather a service embedded within a computing infrastruc-
ture.

The classification of computer contracts described by
Tellez [1], includes a label for the software contracts.
This type of contracts usually is used to negotiating soft-
ware development. In this paper, “computer contracts”
are referred to as “software development contracts”, con-
sidering the classification in [1] (Figure 1).

3. Standards and the Economy

Information Asymmetry

The concept of information asymmetry and its implica-
tions have been studied by Akerlof, Spence, and Stiglitz,
who were awarded the Nobel Prize in 2001: their work is
central to current microeconomic theory [4-7].

Usually, economic studies are conducted under the
assumption that buyers and sellers have the same infor-
mation available to them. However, this assumption is
not always correct: V. H. Ronald [8] reports that “if
gathering information about quality is onerous, then this
assumption is no longer true.”

B. D. Ordoñez [9] defines information asymmetry as
“the situation in which the buyer and seller have different
information about a transaction to take place.”

Suppose that M is a generic market where, for simplic-
ity, there are two types of goods or services: “m” (poor
quality) and “b” (good quality); in this case, the supply
curve (“O”) and the demand curve (“D”) correspond to
each of the two types of goods or services (Ob, Om, Db,
Dm)—see Figure 2.

This figure shows that the Ob curve is above the Om
curve, which means that the suppliers of good quality
goods or services expect to receive a higher price for
them. The demand curves, where Db is greater than Dm,
can be interpreted as showing that buyers are willing to
pay more for good quality.

Buyers who are not certain as to the quality of what
they are buying will not be willing to pay the higher cost.
They would rather pay a moderate amount, mitigating the
risk to them inherent in paying a higher cost for lower
quality.

In doing so, buyers will be paying for lower-quality
items or services, thus confirming their assumptions. Con-
sequently, they will try to further reduce the suggested
price paid, repeating their lower-quality purchase in sub-

Figure 2. Displacement of supply/demand curves in a ge-
neric market characterized by information asymmetry [9].

sequent deals (t + 1). As consumers realize that most
services or products sold are lacking in quality, there will
be a shift in the demand, due to the perception that all
products and services are low-quality merchandise. This
may be observed in the downward movement of the de-
mand line (D) in steps D1 and D2.

In a market characterized by information asymmetry,
fewer good quality products will be sold, even though
there may be buyers willing to pay for better quality ones
[9].

In this situation, market agents may draw upon differ-
ent resources (i.e. market signals) to point out the liabil-
ity of a particular service or product, usually offering a
warranty [9].

Given the lack of information, buyers determined to
make well-founded deals and decisions are willing to pay
for it. Information is hardly accessible, if at all, for many
market agents. Organisms that would generate and trans-
mit this information to potential buyers are clearly needed
in this particular industry.

Governments, for example, could perform this func-
tion for the general public, saving consumers from hav-
ing to obtain and analyze information themselves on the
goods or services they wish to purchase.

One mechanism for reducing the cost of acquiring and
processing information is the establishment of standards
covering aspects of the quality, features, and description
of products [9]. If such standards were widely available,
it would be easier for buyers to distinguish good quality
products from poor quality ones, leading to better deci-
sion making and increased competitiveness.

“A market becomes competitive when emerging insti-
tutions put limits on the patterns of behavior of economic
agents” [9].

In the particular case of software products, the phe-
nomenon of information asymmetry that occurs in com-
mercial transactions can be readily observed. One way to
address this issue would be to develop a software char-

Open Access TI

F. V. SOUTO, A. ABRAN 264

acterization in the form of a statement of software facts,
to provide software buyers with objective, standards-
based information on a software product, analogous to
the nutrition facts that are provided in the context of food
labeling—see Figure 3.

Software is classified in categories in ISO 12182:1998
Information technology—Categorization of software—
which proposes a functional part classifications and a
non-functional part, which accomplish the IEEE 830
Software Requirements Specifications. For the former,
there are a few international functional sizing standards,
such as ISO 19761. For the latter, there is recent work
linking measurement with ISO 19761 to the non func-
tional requirements described in the European ECSS set
of standards [10].

4. Functional Size Measurement Standard
ISO 19761

4.1. Sizing Software

There are basically two ways to measure software size:
1) By the amount of functionality the software is de-

signed to provide;
2) By the size of the physical elements the software

contains, or their number, once it has been created.
Physical measurements of size may include lines of

code (SLOC), modules, classes, or lines of documenta-
tion. Although these elements can be measured auto-
matically and accurately, they have distinct disadvan-
tages. For instance, size is known precisely only after the
software has been completely built, and all these types of
measurement are technologically dependent, which means
that projects cannot be compared across technologies.

According to the ISO, software functional size is de-
fined as “a software size measure derived from functional
user requirements” [11]. Furthermore, the ISO specifies
that functional size measurements must be independent
of technology. In comparison with physical software

Figure 3. Software labeling: characterization in the form of
software facts.

measurements, functional size measurements show better
correlation with the cost of implementation and better
applicability in the advanced stages of a project [12].

4.2. History of Functional Size Measurement

The idea of measuring software based on functionality
and not on physical elements, like SLOC, was first pro-
posed in 1979 by Allan Albrecht [13], and called Func-
tion Point Analysis. An updated version of his method
followed in 1984.

Several minor improvements to Albrecht’s proposal
have been made over the years [14,15], but the original
structure of his method has never been modified. The
improved versions are referred to as 1st generation me-
thods of functional size measurement (FSM)—see Fig-
ure 4.

In 1994, the ISO established a working group to de-
velop a set of rules to which FSM methods must conform
to be accepted as ISO standards.

In the late 1990s, a number of organizations in the
USA, Canada, and Japan recognized that a good solution
would not be found by luck alone, and they decided to
get together and put up the financial resources required to
set up a research project with dedicated staff and a pro-
ject schedule, including tests carried out in industry [16].

Later, other organizations in Europe and Australia pro-
vided more funding to finance a second round of tests in
industrial settings.

The FFP method was first presented at the IFPUG Fall
Conference in Phoenix (Arizona) in 1997, at which time
it was put into the public domain. It was hoped that the
method would be integrated as an improvement to the
original FPA method.

Subsequently, a group of international experts on func-
tional size measurement, the Common Software Meas-
urement International Consortium—COSMIC—was set
up to make the initial design more robust from a meas-
urement perspective, and to broaden its consensual basis
to bring it up to the level of an international standard, and

Figure 4. Evolution of functional size measurement methods
[16].

Open Access TI

F. V. SOUTO, A. ABRAN 265

to see it adopted as such by the ISO, which could be con-
sidered the ultimate reward for a measure in terms of
recognition.

In September 2007, version 3 was published, submit-
ted to the ISO, and adopted as the ISO 17971—COSMIC
standard in 2009 [17]—see Figure 4.

The size of software measured based on ISO 19761 is
defined by the number of data movements it contains:
(Entries (E), Exits (X), Reads (R), and Writes (W))—see
Figure 5. In ISO 19761, the standard measurement unit
is 1 CFP (i.e. one COSMIC Function Point, which cor-
responds to the movement of a single data group of any
type (Entry (E), Exit (X), Read (R), or Write (W)).

4.3. The Importance of Functional Size
Measurement

In the literature, software development is sometimes
compared to building a house. The plans for the house
are analogous to the models used in software develop-
ment.

What would happen if house plans did not have meas-
ures? Almost certainly, the result would be a badly con-
structed house. Agreeing on contracts for the construc-
tion of a house based on plans without precise measure-
ments would be extremely complicated, not to mention
risky.

It is easy to see that a good quality house cannot be
built without knowing the size of all its elements. More-
over, without precise quantitative data, it would not be
possible:
 To reasonably estimate the duration and costs of the

construction work,
 To monitor the construction process based on the di-

mensions of the house,
 To make comparisons with similar houses,
 etc.

Can software be developed without measuring its size?
Unfortunately, the answer is too often yes. In addition,

Figura 5. Data movements in ISO/IEC 19761 [17].

these projects may not be well managed. In fact, devel-
opment without measurements encourages software to be
developed as an art, instead of as an engineering process.
This frequently leads to unpredictable results [18,19].
Most of the time, the software is not available on time, or
with the desired cost and quality [20]. The situation is
worse when combined with the problems identified by
Tellez [1] in commercial software development relation-
ships.

Many of those involved in the software industry have
misconceptions about software measurement. They con-
sider that software can’t be measured because it is intan-
gible and very complex. This, of course, is a simplistic
view, since even the measurement of physical phenom-
ena can be quite complex, at times requiring models; for
example, the speed of light, which has to be measured
with appropriate models (such as the wave model of light)
and cannot be directly measured physically.

The only ISO standards that currently address the meas-
urement of software features are those related to the size
of their functional requirements [11,17].

In particular, measurements with international stan-
dards can be used for, among other things:
 Software project estimation;
 Software performance measurement;
 Control of software project scope;
 Control of software contracts;
 Determination of the productivity of software pro-

jects.

5. ISO 19761 as an Enabler of
Competitiveness in the Software Industry

5.1. Information Asymmetry: The Issue and Its
Solution

Information asymmetry indicates a lack of information
about a product, and also the fact that individuals are
willing to pay for information in an attempt to make bet-
ter decisions.

The existence of information asymmetry in a market
means that the goods or services that are sold are usually
of lower quality. Consequently, inferior quality products
displace higher quality products.

One way to deal with this issue is for governments to
set rules for the generation and dissemination of the in-
formation needed by the general public through the de-
velopment and adoption of standards which make clear
to buyers the differences between goods and services of
lower and those of higher quality, whether or not they are
similar in size, and whether or not they have particular
characteristics (based on the software characterization or
software facts).

Considering the above, we present a proposal here that
takes into consideration a scheme in which the adoption

Open Access TI

F. V. SOUTO, A. ABRAN 266

by the software industry of the international standard ISO
19761 could improve competitiveness by reducing in-
formation asymmetry.

5.2. Software Industry Context

In the software development process, the information
known at the beginning of the conceptualization phase is
insufficient [21], because the user has a vision of the
software product only at a fairly high level of abstraction.
In addition, the price of software is usually established
before the project begins, which typically leads to a num-
ber of renegotiations (usually for cost increases, rather
than decreases) over its development life cycle.

Negotiations in these very early phases correspond, on
the one hand, to the commercial approach taken by pro-
viders (overestimation) and, on the other, to reserve or
caution on the part of poorly informed buyers, resulting
in information asymmetry. According to the theory of
information asymmetry, this usually leads buyers to pur-
chase cheaper software developments or services than
when the providers send confident signals, in the form of
brand names or certifications, which give assurance that
more expensive goods or services also offer superior qual-
ity.

This phenomenon can also be seen in bidding schemes,
where the lowest bid is accepted, or in contracts where
the providers are big software corporations with specific
certifications.

The reality is that in neither case is it certain that a sat-
isfactory result will be achieved (i.e. one that meets the
functionality requirements expected in the software prod-
uct). To date, most software providers do not use any
international standard to measure software functionality.
The main reasons are the following:
 Lack of knowledge on the part of providers and cus-

tomers;
 The lack of requirements for software-related con-

tracts at the government level as a transparency mecha-
nism.

5.3. Proposal

“Since information asymmetry is the absence of informa-
tion to differentiate software products, and since there
are international standards for the measurement of the
functional size of software, we propose the use of the ISO
19761 standard as a basis for determining this key char-
acteristic of the software and therefore establish a basis
on which sales transactions can be conducted transpar-
ently.”

The focus will be on measuring functional size in
software clusters defined nationally. Usually, these clus-
ters supply software development services to a govern-
ment, which can be a major IT consumer in a country.

This will initially require a national measurement effort
to implement the international standard. The next step
will be to use these measurement results to analyze the
productivity of the projects developed for the govern-
ment.

A current problem in the software industry is to ana-
lyze supply and demand curves, like those in Figure 2;
i.e. unless adequate international measurement standards
are applied, the size of software that is built is almost
never known, either by those who develop it or by those
who purchase it (information asymmetry). Therefore, the
estimated prices are set up rather arbitrarily, which means
that one set of software features (functional size) may be
priced differently by different providers, and there may
be very wide variations in those prices.

At the start, the mandatory use of standards of func-
tional size measurement in software contracts will re-
quire the potential buyer of the software to determine in
greater detail the functionality required, and the provider
of the software to establish an appropriate and competi-
tive cost structure.

When this approach is used on a continuous basis, the
cost per unit of functional size will tend to be influenced
naturally by the market.

Using this approach and assuming that ISO 19761 [17]
is applied, the behavior of the supply and demand curves
in Figure 2 would be modified, because the quantity (Q)
would have a standardized unit (CFP)—see Figure 6.

An analysis of Figure 6 reveals that software buyers
would be willing to pay more for more functional size
and pay less for less software functionality.

By using ISO 19761 [17] as a mechanism for formal
software characterization (software facts), and clearly in-
dicating the functional size of specific software, the pro-
vider and the customer would both be able to correlate
quantity and cost, as in any industry where a larger amount
of product costs more (in this case, the more functional-
ity software has, the higher its cost). This would enable

Figure 6. Supply/demand curve displacement for the soft-
ware market, modified from [9].

Open Access TI

F. V. SOUTO, A. ABRAN 267

customers to make more informed decisions, and result
in the best products being brought to market, and not
necessarily the cheapest.

Governments should promote greater competitiveness
in the software industry by supplying information to pro-
viders and customers, giving average functional size unit
cost references. For example, they should conduct studies
to determine average functional size unit costs by type of
application, by technology, by geographic area, etc., all
based on international standards for the measurement of
software size.

Of course, there are other factors—software facts—
that could improve the supply/demand curve for software,
in addition to functional size. Many of these are related
to non functional requirements, such as quality, main-
tainability, usability, etc. However, mature solutions and
international standards for these do not yet exist. In the
interim, we must start with the existing FSM standards,
as they are the only quantitative standards available to
implement the software characterization mechanism in
the context of software contracts, and to ensure that trans-
actions are information symmetrical and enable competi-
tiveness.

6. Conclusions

This paper has described the issue of information asym-
metry that currently arises in software development con-
tracts, as illustrated by the unequal level of information
that the agents in a software purchase transaction have,
which often give the advantage to the providers.

In any industry where a product is fabricated, there is a
correlation between what is built and the cost to build it.
In the case of software, without measurement standards,
it has not been easy to see this correlation at work, and
the result has been different prices for equivalent soft-
ware functionality.

The proposal in this paper is to implement a mecha-
nism to obtain a software characterization or “software
facts” using quantitative standards, the only ones avail-
able at the present time being the ISO standards on func-
tional size measurement. We recommend use of the
COSMIC method (i.e. ISO 19761).

Governments could then act as society’s guarantors by
funding studies to document how prices are established
(for technologies, geographic areas, etc.), with a view to
generating greater competitiveness in the software indus-
try.

A functional size standard is only the beginning in the
characterization of software to develop the basic infor-
mation required by the agents involved in this type of
transaction. Of course, there are further costs associated
with software development projects related to other fac-
tors; however, while there are descriptive standards for
software, such as maintainability, quality, etc., there is

not yet a consensus on how to describe it quantitatively.
Consequently, there is a need to develop additional mod-
els that can be used to provide a quantitative index for
measuring software, initially based on a qualitative ap-
proach, but later on a quantitative approach.

REFERENCES
[1] V. J. Tellez, “Derecho Informático,” 4th Edition, McGraw

Hill, México, 2009.

[2] R. M. A. Davara, “Manual de Derecho Informático,”
Décima Edición, Thomson Aranzadi, 2008.

[3] M. L. Katz and H. S. Rosen, “Microeconomics,” Irwin
McGraw-Hill, Boston, 1998.

[4] K. Lofgren, T. Prsson and J. W. Weibull, “Markets with
Asymmetric Information: The Contributions of George
Akerlof, Michael Spence and Joseph Stiglitz,” The Scan-
dinavian Journal of Economics, Vol. 104, No. 2, 2002, pp.
195-211. http://dx.doi.org/10.1111/1467-9442.00280

[5] G. A. Akerlof, “The Market for ‘Lemons’: Quality Un-
certainty and the Market Mechanism,” The Quarterly
Journal of Economics, Vol. 84, No. 3, 1970, pp. 488-500.
http://dx.doi.org/10.2307/1879431

[6] M. Rothschield and J. Stiglitz, “Equilibrium in Competi-
tive Insurance Markets: An Essay on the Economics of
Imperfect Information,” The Quarterly Journal of Eco-
nomics, Vol. 90, No. 4, 1976, pp. 629-649.
http://dx.doi.org/10.2307/1885326

[7] M. Spence, “Job Market Signaling,” The Quarterly Jour-
nal of Economics, Vol. 87, No. 3, 1973, pp. 355-374.
http://dx.doi.org/10.2307/1882010

[8] V. H. Ronald, “Microeconomía Intermedia,” 4th Edition,
Un Enfoque Actual, Spain, 2007.

[9] B. D. Ordoñez, “La Economía y las Normas,” NYCE,
2007.

[10] A. Abran, K. T. Al-Sarayreh and J. J. Cuadrado-Gallego,
“A Standards-Based Reference Framework for System
Portability Requirements,” Computer Standards and In-
terfaces Journal, Vol. 35, No. 4, 2013, pp. 380-395.

[11] ISO, “Information Technology—Software Measurement—
Functional Size Measurement,” ISO/IEC 14143-1, 1997.

[12] L. Santillo and C. Grande, “Breve Storia della Misurazi-
one del Software,” GUFPI-ISMA, Newsletter, Vol. 3, No.
1, 2006.

[13] A. J. Albrecht, “Measuring Application Development
Productivity,” IBM Application Development Sympo-
sium, GUIDE Int and Share Inc., IBM Corp., Monterrey,
14-17 October 1979, p. 83.

[14] T. C. Jones, “The SPR Feature Point Method,” Software
Productivity Research Inc., 1986.

[15] C. R. Symons, “Function Point Analysis: Difficulties and
Improvements,” IEEE Transactions on Software Engi-
neering, Vol. 14, No. 1, 1988, pp. 2-11.
http://dx.doi.org/10.1109/32.4618

[16] A. Abran, “Software Metrics and Software Metrology,”
John Wiley & Sons Interscience and IEEE-CS Press, New
Jersey, 2010, p. 328.

Open Access TI

http://dx.doi.org/10.1111/1467-9442.00280
http://dx.doi.org/10.2307/1879431
http://dx.doi.org/10.2307/1885326
http://dx.doi.org/10.2307/1882010
http://dx.doi.org/10.1109/32.4618

F. V. SOUTO, A. ABRAN

Open Access TI

268

[17] COSMIC Core Team Authors, “Measurement Manual,
the COSMIC Implementation Guide for ISO/IEC 19761:
2003,” The Common Software Measurement Interna-
tional Consortium (COSMIC), May 2009.

[18] Standish Group International, CHAOS Summary 2009,
Coll. Research Reports, The Standish Group International,
Inc.

[19] K. Emam and A. G. Koru, “A Replicated Survey of IT

Software Project Failures,” IEEE Software, Vol. 25, No. 5,
2008, pp. 84-90.
http://dx.doi.org/10.1109/MS.2008.107

[20] F. V. Souto, “Midiendo la Calidad del Software,” Soft-
ware Gurú, No. 40, 2013, pp. 38-39.

[21] F. Valdés, “Design of a Fuzzy Logic Software Estimation
Process,” Ph.D. Thesis, École de Technologie Supérieure,
Université Du Québec, Montreal, 2011.

http://dx.doi.org/10.1109/MS.2008.107

